Lower bounds for the largest eigenvalue of the gcd matrix on { 1 , 2 , , n }

Jorma K. Merikoski

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 3, page 1027-1038
  • ISSN: 0011-4642

Abstract

top
Consider the n × n matrix with ( i , j ) ’th entry gcd ( i , j ) . Its largest eigenvalue λ n and sum of entries s n satisfy λ n > s n / n . Because s n cannot be expressed algebraically as a function of n , we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that λ n > 6 π - 2 n log n for all n . If n is large enough, this follows from F. Balatoni (1969).

How to cite

top

Merikoski, Jorma K.. "Lower bounds for the largest eigenvalue of the gcd matrix on $\lbrace 1,2,\dots ,n\rbrace $." Czechoslovak Mathematical Journal 66.3 (2016): 1027-1038. <http://eudml.org/doc/286799>.

@article{Merikoski2016,
abstract = {Consider the $n\times n$ matrix with $(i,j)$’th entry $\gcd \{(i,j)\}$. Its largest eigenvalue $\lambda _n$ and sum of entries $s_n$ satisfy $\lambda _n>s_n/n$. Because $s_n$ cannot be expressed algebraically as a function of $n$, we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that $\lambda _n>6\pi ^\{-2\}n\log \{n\}$ for all $n$. If $n$ is large enough, this follows from F. Balatoni (1969).},
author = {Merikoski, Jorma K.},
journal = {Czechoslovak Mathematical Journal},
keywords = {eigenvalue bounds; greatest common divisor matrix},
language = {eng},
number = {3},
pages = {1027-1038},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lower bounds for the largest eigenvalue of the gcd matrix on $\lbrace 1,2,\dots ,n\rbrace $},
url = {http://eudml.org/doc/286799},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Merikoski, Jorma K.
TI - Lower bounds for the largest eigenvalue of the gcd matrix on $\lbrace 1,2,\dots ,n\rbrace $
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 1027
EP - 1038
AB - Consider the $n\times n$ matrix with $(i,j)$’th entry $\gcd {(i,j)}$. Its largest eigenvalue $\lambda _n$ and sum of entries $s_n$ satisfy $\lambda _n>s_n/n$. Because $s_n$ cannot be expressed algebraically as a function of $n$, we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that $\lambda _n>6\pi ^{-2}n\log {n}$ for all $n$. If $n$ is large enough, this follows from F. Balatoni (1969).
LA - eng
KW - eigenvalue bounds; greatest common divisor matrix
UR - http://eudml.org/doc/286799
ER -

References

top
  1. Altınışık, E., Keskin, A., Yıldız, M., Demirbüken, M., On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices, Linear Algebra Appl. 493 (2016), 1-13. (2016) Zbl1334.15079MR3452722
  2. Balatoni, F., On the eigenvalues of the matrix of the Smith determinant, Mat. Lapok 20 (1969), 397-403 Hungarian. (1969) Zbl0213.32303MR0291186
  3. Beslin, S., Ligh, S., Greatest common divisor matrices, Linear Algebra Appl. 118 (1989), 69-76. (1989) Zbl0672.15005MR0995366
  4. Hong, S., Loewy, R., 10.1017/S0017089504001995, Glasg. Math. J. 46 (2004), 551-569. (2004) Zbl1083.11021MR2094810DOI10.1017/S0017089504001995
  5. Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290
  6. Mitrinović, D. S., Sándor, J., Crstici, B., Handbook of Number Theory, Mathematics and Its Applications 351 Kluwer Academic Publishers, Dordrecht (1995). (1995) Zbl0862.11001MR1374329
  7. Smith, H. J. S., On the value of a certain arithmetical determinant, Proc. L. M. S. 7 208-213 (1875). (1875) MR1575630
  8. Tóth, L., A survey of gcd-sum functions, J. Integer Seq. (electronic only) 13 (2010), Article ID 10.8.1, 23 pages. (2010) Zbl1206.11118MR2718232
  9. Yaglom, A. M., Yaglom, I. M., Non-elementary Problems in an Elementary Exposition, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskva (1954), Russian. (1954) MR0070671
  10. Weisstein, E. W., Faulhaber's Formula, From Mathworld---A Wolfram Web Resource, http://mathworld.wolfram.com/FaulhabersFormula.html. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.