The Schreier Property and Gauss' Lemma
Daniel D. Anderson; Muhammad Zafrullah
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 1, page 43-62
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ANDERSON, D.D. - ANDERSON, D.F. - ZAFRULLAH, M., Splitting the t-class group, J. Pure Appl. Algebra, 74 (1991), 17-37. Zbl0760.13006MR1129127DOI10.1016/0022-4049(91)90046-5
- ANDERSON, D.D. - QUINTERO, R., Some generalizations of GCD-domains, Factorization in Integral Domains, 439-480, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997. MR1460772
- ANDERSON, D.D. - ZAFRULLAH, M., M, P.. Cohn's completely primal elements, Zero-dimensional Commutative Rings, 115-123, Lecture Notes in Pure and Appl. Math., 171, Dekker, New York, 1995. Zbl0887.13012MR1335708
- ANDERSON, D.D. - ZAFRULLAH, M., Splitting sets in integral domains, Proc. Amer. Math. Soc., 129 (2001), 2209-2217. Zbl0962.13001MR1823902DOI10.1090/S0002-9939-00-05863-9
- ANDERSON, D.F., Integral v-ideals, Glasgow Math. J., 22 (1981), 167-172. Zbl0467.13012MR623001DOI10.1017/S0017089500004638
- ARNOLD, J. - SHELDON, P., Integral domains that satisfy Gauss's lemma, Michigan Math. J., 22 (1975), 39-51. Zbl0314.13008MR371887
- BASTIDA, E. - GILMER, R., Overrings and divisorial ideals of rings of the form D+M, Michigan Math. J., 20 (1973), 79-95. Zbl0239.13001MR323782
- BROOKFIELD, G. - RUSH, D., An antimatter domain that is not pre-Schreier, preprint.
- COHN, P.M., Bezout rings and their subrings, Proc. Cambridge Phil. Soc., 64 (1968), 251-264. Zbl0157.08401MR222065
- COYKENDALL, J. - DOBBS, D. - MULLINS, B., On integral domains with no atoms, Comm. Algebra, 27 (1999), 5813-5831. Zbl0990.13015MR1726278DOI10.1080/00927879908826792
- DOBBS, D., Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math., 4 (1978), 551-567. Zbl0388.13002MR523613
- GILMER, R., Multiplicative Ideal Theory, Dekker, New York, 1972. Zbl0248.13001MR427289
- GILMER, R. - PARKER, T., Divisibility properties in semigroup rings, Michigan Math. J., 21 (1974), 65-86. Zbl0285.13007MR342635
- HEDSTROM, J. - HOUSTON, E., Pseudo-valuation domains, Pacific J. Math., 75 (1978), 137-147. Zbl0368.13002MR485811
- KAPLANSKY, I., Commutative Rings, Allyn and Bacon, Boston, 1970. MR254021
- MALIK, S. - MOTT, J. - ZAFRULLAH, M., The GCD property and irreducible quadratic polynomials, Internat. J. Math. Sci., 9 (1986), 749-752. Zbl0646.13009MR870530DOI10.1155/S0161171286000893
- MOTT, J. - NASHIER, B. - ZAFRULLAH, M., Contents of polynomials and invertibility, Comm. Algebra, 18 (1990), 1569-1583. Zbl0705.13005MR1059749DOI10.1080/00927879008823984
- MCADAM, S. - RUSH, D., Schreier rings, Bull. London Math. Soc., 10 (1978), 77-80. MR476723DOI10.1112/blms/10.1.77
- MOTT, J. - SCHEXNAYDER, M., Exact sequences of semi-value groups, J. Reine Angew Math.283/284 (1976), 388-401. Zbl0347.13001MR404247
- RUSH, D., Quadratic polynomials, factorization in integral domains and Schreier domains in pullbacks, Mathematika, 50 (2003), 103-112. Zbl1076.13002MR2136355DOI10.1112/S0025579300014832
- SCHEXNAYDER, M., Groups of Divisibility, Dissertation, Florida State University, 1973.
- WATERHOUSE, W., Quadratic polynomials and unique factorization, Amer. Math. Monthly, 109 (2002), 70-72. Zbl1036.13004MR1903514DOI10.2307/2695769
- ZAFRULLAH, M., On a property of pre-Schreier domains, Comm. Algebra, 15 (1987), 1895-1920. Zbl0634.13004MR898300DOI10.1080/00927878708823512
- ZAFRULLAH, M., Well-behaved prime t-ideals, J. Pure Appl. Algebra, 65 (1990), 199-207. Zbl0705.13001MR1068255DOI10.1016/0022-4049(90)90119-3
- ZAFRULLAH, M., Putting t-invertibility to use, Non-Noetherian Commutative Ring Theory, 429-457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000. Zbl0988.13003MR1858174