On an estimate of a functional in the class of holomorphic univalent functions

Zbigniew Jerzy Jakubowski; Krystyna Zyskowska

Mathematica Bohemica (1993)

  • Volume: 118, Issue: 3, page 281-296
  • ISSN: 0862-7959

Abstract

top
Let S denote the class of functions f ( x ) = z + a 2 z 2 + a 3 z 3 + ... univalent and holomorphic in the unit disc Δ = { z : z < 1 } . In the paper we obtain an estimate of the functional a 3 - c a 2 2 + c a 2 n in the class S for arbitrarily fixed x 𝐑 and n = 1 , 2 , 3 , ... . Hence, for some special values of the parameters, we obtain estimates of several interesting functionals and numerous applications. A few open problems of a similar type are also formulated.

How to cite

top

Jakubowski, Zbigniew Jerzy, and Zyskowska, Krystyna. "On an estimate of a functional in the class of holomorphic univalent functions." Mathematica Bohemica 118.3 (1993): 281-296. <http://eudml.org/doc/29081>.

@article{Jakubowski1993,
abstract = {Let $S$ denote the class of functions $f(x)=z+a_2z^2+a_3z^3+\ldots $ univalent and holomorphic in the unit disc $\Delta = \lbrace z:\left|z\right|<1\rbrace $. In the paper we obtain an estimate of the functional $\left|a_3-ca^2_2\right|+c\left|a_2\right|^n$ in the class $S$ for arbitrarily fixed $x\in \mathbf \{R\}$ and $n=1,2,3,\ldots $. Hence, for some special values of the parameters, we obtain estimates of several interesting functionals and numerous applications. A few open problems of a similar type are also formulated.},
author = {Jakubowski, Zbigniew Jerzy, Zyskowska, Krystyna},
journal = {Mathematica Bohemica},
keywords = {estimation of functionals; Koebe function; univalent function; coefficient problem; estimation of functionals; Koebe function},
language = {eng},
number = {3},
pages = {281-296},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an estimate of a functional in the class of holomorphic univalent functions},
url = {http://eudml.org/doc/29081},
volume = {118},
year = {1993},
}

TY - JOUR
AU - Jakubowski, Zbigniew Jerzy
AU - Zyskowska, Krystyna
TI - On an estimate of a functional in the class of holomorphic univalent functions
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 3
SP - 281
EP - 296
AB - Let $S$ denote the class of functions $f(x)=z+a_2z^2+a_3z^3+\ldots $ univalent and holomorphic in the unit disc $\Delta = \lbrace z:\left|z\right|<1\rbrace $. In the paper we obtain an estimate of the functional $\left|a_3-ca^2_2\right|+c\left|a_2\right|^n$ in the class $S$ for arbitrarily fixed $x\in \mathbf {R}$ and $n=1,2,3,\ldots $. Hence, for some special values of the parameters, we obtain estimates of several interesting functionals and numerous applications. A few open problems of a similar type are also formulated.
LA - eng
KW - estimation of functionals; Koebe function; univalent function; coefficient problem; estimation of functionals; Koebe function
UR - http://eudml.org/doc/29081
ER -

References

top
  1. I. E. Bazilevič, Domains of principal coefficients of bounded univalent functions of p-tuple symmetry, Mat. Sb. 4З (1957), no. 4, 409-428. (In Russian.) (1957) MR0097523
  2. L. Bieberbach, Über die Ҟoeffizienten derjenigen Potenzreihen, welche schlichte Abbildung des Einheitskreises vermitteln, Preuss. Akad. der Wiss. Sitzungsb. 38 (1916), 940-955, Berlin. (1916) 
  3. P. L. Duren, Univalent functions, vol. 259, Grundlehren der math. Wissenschaften, 1983. (1983) Zbl0514.30001MR0708494
  4. M. Fekete G. Szegö, Eine Bemerkung über ungerate schlichte Funktionen, J. London Math. Soc. 8 (1933), no. 30, 85-89. (1933) MR1574865
  5. G. M. Goluzin, Some questions of the theory of univalent functions, Trudy Mat. Inst. Steklov 27 (1949), 51-56. (In Russian.) (1949) MR0042510
  6. Z. J. Jakubowski W. Majchrzak A. Szwankowski, On some extremal problem in the class S of functions holomorphic and univalent in the unit disc, Ann. UMCS 40 (1986), 63-75 (1988). (1986) MR0945161
  7. Z. J. Jakubowski A. Szwankowski, On some extremal problem in the class of holomorphic symmetric univalent functions, Commentationes Mathematicæ 29(1990), 195-207. (1990) MR1059124
  8. J. A. Jenkins, On certain coefficients on univalent functions, Princ. Univ. Press, New Jersey, 1960, pp. 159-194. (1960) MR0117345
  9. K. Lowner, 10.1007/BF01448091, Mat. Ann. 89 (1923), 103-121. (1923) MR1512136DOI10.1007/BF01448091
  10. K. Zyskowska, On an estimate of some functional in the class of odd bounded univalent functions, Acta Universitatis Lodziensis 5 (1992), 169-191. (1992) Zbl0822.30018MR1240139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.