Generalized notions of amenability for a class of matrix algebras
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 2, page 199-208
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSahami, Amir. "Generalized notions of amenability for a class of matrix algebras." Commentationes Mathematicae Universitatis Carolinae 60.2 (2019): 199-208. <http://eudml.org/doc/294332>.
@article{Sahami2019,
abstract = {We investigate the amenability and its related homological notions for a class of $I\times I$-upper triangular matrix algebra, say $\{\rm UP\}(I,A)$, where $A$ is a Banach algebra equipped with a nonzero character. We show that $\{\rm UP\}(I,A)$ is pseudo-contractible (amenable) if and only if $I$ is singleton and $A$ is pseudo-contractible (amenable), respectively. We also study pseudo-amenability and approximate biprojectivity of $\{\rm UP\}(I,A)$.},
author = {Sahami, Amir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {upper triangular Banach algebra; amenability; left $\varphi $-amenability; approximate biprojectivity},
language = {eng},
number = {2},
pages = {199-208},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Generalized notions of amenability for a class of matrix algebras},
url = {http://eudml.org/doc/294332},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Sahami, Amir
TI - Generalized notions of amenability for a class of matrix algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 2
SP - 199
EP - 208
AB - We investigate the amenability and its related homological notions for a class of $I\times I$-upper triangular matrix algebra, say ${\rm UP}(I,A)$, where $A$ is a Banach algebra equipped with a nonzero character. We show that ${\rm UP}(I,A)$ is pseudo-contractible (amenable) if and only if $I$ is singleton and $A$ is pseudo-contractible (amenable), respectively. We also study pseudo-amenability and approximate biprojectivity of ${\rm UP}(I,A)$.
LA - eng
KW - upper triangular Banach algebra; amenability; left $\varphi $-amenability; approximate biprojectivity
UR - http://eudml.org/doc/294332
ER -
References
top- Aghababa H. P., Shi L. Y., Wu Y. J., 10.1007/s10114-013-0627-4, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 7, 1329–1350. MR3068583DOI10.1007/s10114-013-0627-4
- Alaghmandan M., Nasr-Isfahani R., Nemati M., 10.1007/s00013-010-0177-2, Arch. Math. (Basel) 95 (2010), no. 4, 373–379. MR2727314DOI10.1007/s00013-010-0177-2
- Choi Y., Ghahramani F., Zhang Y., 10.1016/j.jfa.2009.02.012, J. Funct. Anal. 256 (2009), no. 10, 3158–3191. MR2504522DOI10.1016/j.jfa.2009.02.012
- Dashti M., Nasr-Isfahani R., Soltani Renani S., 10.4153/CMB-2012-015-3, Canad. Math. Bull. 57 (2014), no. 1, 37–41. MR3150714DOI10.4153/CMB-2012-015-3
- Dales H. G., Lau A. T.-M., Strauss D., Banach algebras on semigroups and on their compactifications, Mem. Amer. Math. Soc. 205 (2010), no. 966, 165 pages. MR2650729
- Duncan J., Paterson A. L. T., 10.7146/math.scand.a-12298, Math. Scand. 66 (1990), no. 1, 141–146. MR1060904DOI10.7146/math.scand.a-12298
- Esslamzadeh G. H., 10.1007/s00605-003-0046-1, Monatsh. Math. 142 (2004), no. 3, 193–203. MR2071245DOI10.1007/s00605-003-0046-1
- Forrest B. E., Marcoux L. W., 10.1512/iumj.1996.45.1147, Indiana. Univ. Math. J. 45 (1996), no. 2, 441–462. MR1414337DOI10.1512/iumj.1996.45.1147
- Forrest B. E., Marcoux L. W., 10.1090/S0002-9947-01-02957-9, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1435–1452. MR1873013DOI10.1090/S0002-9947-01-02957-9
- Ghahramani F., Loy R. J., 10.1016/S0022-1236(03)00214-3, J. Funct. Anal. 208 (2004), no. 1, 229–260. MR2034298DOI10.1016/S0022-1236(03)00214-3
- Ghahramani F., Loy R. J., Zhang Y., 10.1016/j.jfa.2007.12.011, J. Funct. Anal. 254 (2008), no. 7, 1776–1810. MR2397875DOI10.1016/j.jfa.2007.12.011
- Ghahramani F., Zhang Y., 10.1017/S0305004106009649, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 111–123. Zbl1118.46046MR2296395DOI10.1017/S0305004106009649
- Hu Z., Monfared M. S., Traynor T., 10.4064/sm193-1-3, Studia Math. 193 (2009), no. 1, 53–78. MR2506414DOI10.4064/sm193-1-3
- Jabbari A., Abad T. M., Abadi M. Z., 10.4064/cm122-1-1, Colloq. Math. 122 (2011), no. 1, 1–10. MR2755887DOI10.4064/cm122-1-1
- Kaniuth E., Lau A. T., Pym J., 10.1017/S0305004107000874, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. MR2388235DOI10.1017/S0305004107000874
- Nasr-Isfahani R., Soltani Renani S., 10.4064/sm202-3-1, Studia Math. 202 (2011), no. 3, 205–225. MR2771651DOI10.4064/sm202-3-1
- Runde V., Lectures on Amenability, Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR1874893
- Sahami A., Pourabbas A., 10.1007/s00233-015-9701-9, Semigroup Forum 92 (2016), no. 2, 474–485. MR3472027DOI10.1007/s00233-015-9701-9
- Sahami A., On biflatness and -biflatness of some Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 1, 111–122. MR3785185
- Sahami A., Pourabbas A., 10.36045/bbms/1385390764, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 5, 789–801. MR3160589DOI10.36045/bbms/1385390764
- Zhang Y., 10.1090/S0002-9939-99-04896-0, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3237–3242. MR1605957DOI10.1090/S0002-9939-99-04896-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.