Generalized notions of amenability for a class of matrix algebras

Amir Sahami

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 2, page 199-208
  • ISSN: 0010-2628

Abstract

top
We investigate the amenability and its related homological notions for a class of I × I -upper triangular matrix algebra, say UP ( I , A ) , where A is a Banach algebra equipped with a nonzero character. We show that UP ( I , A ) is pseudo-contractible (amenable) if and only if I is singleton and A is pseudo-contractible (amenable), respectively. We also study pseudo-amenability and approximate biprojectivity of UP ( I , A ) .

How to cite

top

Sahami, Amir. "Generalized notions of amenability for a class of matrix algebras." Commentationes Mathematicae Universitatis Carolinae 60.2 (2019): 199-208. <http://eudml.org/doc/294332>.

@article{Sahami2019,
abstract = {We investigate the amenability and its related homological notions for a class of $I\times I$-upper triangular matrix algebra, say $\{\rm UP\}(I,A)$, where $A$ is a Banach algebra equipped with a nonzero character. We show that $\{\rm UP\}(I,A)$ is pseudo-contractible (amenable) if and only if $I$ is singleton and $A$ is pseudo-contractible (amenable), respectively. We also study pseudo-amenability and approximate biprojectivity of $\{\rm UP\}(I,A)$.},
author = {Sahami, Amir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {upper triangular Banach algebra; amenability; left $\varphi $-amenability; approximate biprojectivity},
language = {eng},
number = {2},
pages = {199-208},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Generalized notions of amenability for a class of matrix algebras},
url = {http://eudml.org/doc/294332},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Sahami, Amir
TI - Generalized notions of amenability for a class of matrix algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 2
SP - 199
EP - 208
AB - We investigate the amenability and its related homological notions for a class of $I\times I$-upper triangular matrix algebra, say ${\rm UP}(I,A)$, where $A$ is a Banach algebra equipped with a nonzero character. We show that ${\rm UP}(I,A)$ is pseudo-contractible (amenable) if and only if $I$ is singleton and $A$ is pseudo-contractible (amenable), respectively. We also study pseudo-amenability and approximate biprojectivity of ${\rm UP}(I,A)$.
LA - eng
KW - upper triangular Banach algebra; amenability; left $\varphi $-amenability; approximate biprojectivity
UR - http://eudml.org/doc/294332
ER -

References

top
  1. Aghababa H. P., Shi L. Y., Wu Y. J., 10.1007/s10114-013-0627-4, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 7, 1329–1350. MR3068583DOI10.1007/s10114-013-0627-4
  2. Alaghmandan M., Nasr-Isfahani R., Nemati M., 10.1007/s00013-010-0177-2, Arch. Math. (Basel) 95 (2010), no. 4, 373–379. MR2727314DOI10.1007/s00013-010-0177-2
  3. Choi Y., Ghahramani F., Zhang Y., 10.1016/j.jfa.2009.02.012, J. Funct. Anal. 256 (2009), no. 10, 3158–3191. MR2504522DOI10.1016/j.jfa.2009.02.012
  4. Dashti M., Nasr-Isfahani R., Soltani Renani S., 10.4153/CMB-2012-015-3, Canad. Math. Bull. 57 (2014), no. 1, 37–41. MR3150714DOI10.4153/CMB-2012-015-3
  5. Dales H. G., Lau A. T.-M., Strauss D., Banach algebras on semigroups and on their compactifications, Mem. Amer. Math. Soc. 205 (2010), no. 966, 165 pages. MR2650729
  6. Duncan J., Paterson A. L. T., 10.7146/math.scand.a-12298, Math. Scand. 66 (1990), no. 1, 141–146. MR1060904DOI10.7146/math.scand.a-12298
  7. Esslamzadeh G. H., 10.1007/s00605-003-0046-1, Monatsh. Math. 142 (2004), no. 3, 193–203. MR2071245DOI10.1007/s00605-003-0046-1
  8. Forrest B. E., Marcoux L. W., 10.1512/iumj.1996.45.1147, Indiana. Univ. Math. J. 45 (1996), no. 2, 441–462. MR1414337DOI10.1512/iumj.1996.45.1147
  9. Forrest B. E., Marcoux L. W., 10.1090/S0002-9947-01-02957-9, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1435–1452. MR1873013DOI10.1090/S0002-9947-01-02957-9
  10. Ghahramani F., Loy R. J., 10.1016/S0022-1236(03)00214-3, J. Funct. Anal. 208 (2004), no. 1, 229–260. MR2034298DOI10.1016/S0022-1236(03)00214-3
  11. Ghahramani F., Loy R. J., Zhang Y., 10.1016/j.jfa.2007.12.011, J. Funct. Anal. 254 (2008), no. 7, 1776–1810. MR2397875DOI10.1016/j.jfa.2007.12.011
  12. Ghahramani F., Zhang Y., 10.1017/S0305004106009649, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 111–123. Zbl1118.46046MR2296395DOI10.1017/S0305004106009649
  13. Hu Z., Monfared M. S., Traynor T., 10.4064/sm193-1-3, Studia Math. 193 (2009), no. 1, 53–78. MR2506414DOI10.4064/sm193-1-3
  14. Jabbari A., Abad T. M., Abadi M. Z., 10.4064/cm122-1-1, Colloq. Math. 122 (2011), no. 1, 1–10. MR2755887DOI10.4064/cm122-1-1
  15. Kaniuth E., Lau A. T., Pym J., 10.1017/S0305004107000874, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. MR2388235DOI10.1017/S0305004107000874
  16. Nasr-Isfahani R., Soltani Renani S., 10.4064/sm202-3-1, Studia Math. 202 (2011), no. 3, 205–225. MR2771651DOI10.4064/sm202-3-1
  17. Runde V., Lectures on Amenability, Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR1874893
  18. Sahami A., Pourabbas A., 10.1007/s00233-015-9701-9, Semigroup Forum 92 (2016), no. 2, 474–485. MR3472027DOI10.1007/s00233-015-9701-9
  19. Sahami A., On biflatness and φ -biflatness of some Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 1, 111–122. MR3785185
  20. Sahami A., Pourabbas A., 10.36045/bbms/1385390764, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 5, 789–801. MR3160589DOI10.36045/bbms/1385390764
  21. Zhang Y., 10.1090/S0002-9939-99-04896-0, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3237–3242. MR1605957DOI10.1090/S0002-9939-99-04896-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.