A new algorithm for approximating the least concave majorant

Martin Franců; Ron Kerman; Gord Sinnamon

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 4, page 1071-1093
  • ISSN: 0011-4642

Abstract

top
The least concave majorant, F ^ , of a continuous function F on a closed interval, I , is defined by F ^ ( x ) = inf { G ( x ) : G F , G concave } , x I . We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on I . Given any function F 𝒞 4 ( I ) , it can be well-approximated on I by a clamped cubic spline S . We show that S ^ is then a good approximation to F ^ . We give two examples, one to illustrate, the other to apply our algorithm.

How to cite

top

Franců, Martin, Kerman, Ron, and Sinnamon, Gord. "A new algorithm for approximating the least concave majorant." Czechoslovak Mathematical Journal 67.4 (2017): 1071-1093. <http://eudml.org/doc/294413>.

@article{Franců2017,
abstract = {The least concave majorant, $\hat\{F\}$, of a continuous function $F$ on a closed interval, $I$, is defined by \[ \hat\{F\} (x) = \inf \lbrace G(x)\colon G \ge F,\ G \text\{ concave\}\rbrace ,\quad x \in I. \] We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in \mathcal \{C\}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat\{S\}$ is then a good approximation to $\hat\{F\}$. We give two examples, one to illustrate, the other to apply our algorithm.},
author = {Franců, Martin, Kerman, Ron, Sinnamon, Gord},
journal = {Czechoslovak Mathematical Journal},
keywords = {least concave majorant; level function; spline approximation},
language = {eng},
number = {4},
pages = {1071-1093},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new algorithm for approximating the least concave majorant},
url = {http://eudml.org/doc/294413},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Franců, Martin
AU - Kerman, Ron
AU - Sinnamon, Gord
TI - A new algorithm for approximating the least concave majorant
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1071
EP - 1093
AB - The least concave majorant, $\hat{F}$, of a continuous function $F$ on a closed interval, $I$, is defined by \[ \hat{F} (x) = \inf \lbrace G(x)\colon G \ge F,\ G \text{ concave}\rbrace ,\quad x \in I. \] We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in \mathcal {C}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat{S}$ is then a good approximation to $\hat{F}$. We give two examples, one to illustrate, the other to apply our algorithm.
LA - eng
KW - least concave majorant; level function; spline approximation
UR - http://eudml.org/doc/294413
ER -

References

top
  1. Brudnyĭ, Y. A., Krugljak, N. Y., Interpolation Functors and Interpolation Spaces. Vol. 1, North-Holland Mathematical Library 47, Amsterdam (1991). (1991) Zbl0743.46082MR1107298
  2. Carolan, C. A., 10.2307/3315954, Can. J. Stat. 30 (2002), 317-328. (2002) Zbl1012.62052MR1926068DOI10.2307/3315954
  3. Debreu, G., 10.1016/0304-4068(76)90020-3, J. Math. Econ. 3 (1976), 121-129. (1976) Zbl0361.90007MR0411563DOI10.1016/0304-4068(76)90020-3
  4. Hall, C. A., Meyer, W. W., 10.1016/0021-9045(76)90040-x, J. Approximation Theory 16 (1976), 105-122. (1976) Zbl0316.41007MR0397247DOI10.1016/0021-9045(76)90040-x
  5. Halperin, I., 10.4153/CJM-1953-031-3, Can. J. Math. 5 (1953), 273-288. (1953) Zbl0052.11303MR0056195DOI10.4153/CJM-1953-031-3
  6. Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A., 10.1007/978-1-4612-2222-4, Lecture Notes in Statistics 129, Springer, Berlin (1998). (1998) Zbl0899.62002MR1618204DOI10.1007/978-1-4612-2222-4
  7. Jarvis, R. A., 10.1016/0020-0190(73)90020-3, Inf. Process. Lett. 2 (1973), 18-21. (1973) Zbl0256.68041MR0381227DOI10.1016/0020-0190(73)90020-3
  8. Kerman, R., Milman, M., Sinnamon, G., 10.5209/rev_rema.2007.v20.n2.16492, Rev. Mat. Complut. 20 (2007), 367-389. (2007) Zbl1144.46058MR2351114DOI10.5209/rev_rema.2007.v20.n2.16492
  9. Lorentz, G. G., Bernstein Polynomials, Mathematical Expositions, no. 8. University of Toronto Press X, Toronto (1953). (1953) Zbl0051.05001MR0057370
  10. Mastyło, M., Sinnamon, G., 10.1016/j.jfa.2006.05.007, J. Funct. Anal. 240 (2006), 192-225. (2006) Zbl1116.46015MR2259895DOI10.1016/j.jfa.2006.05.007
  11. Peetre, J., 10.1007/BF01894779, Acta Math. Acad. Sci. Hung. 21 (1970), 327-333. (1970) Zbl0204.38002MR0272960DOI10.1007/BF01894779

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.