Lanczos-like algorithm for the time-ordered exponential: The * -inverse problem

Pierre-Louis Giscard; Stefano Pozza

Applications of Mathematics (2020)

  • Volume: 65, Issue: 6, page 807-827
  • ISSN: 0862-7940

Abstract

top
The time-ordered exponential of a time-dependent matrix 𝖠 ( t ) is defined as the function of 𝖠 ( t ) that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in 𝖠 ( t ) . The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by * . Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed to be proved. Here we constructively prove that * -inverses exist for all non-identically null, smooth, separable functions of two variables. As a corollary, we partially solve the Green’s function inverse problem which, given a distribution G , asks for the differential operator whose fundamental solution is G . Our results are abundantly illustrated by examples.

How to cite

top

Giscard, Pierre-Louis, and Pozza, Stefano. "Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem." Applications of Mathematics 65.6 (2020): 807-827. <http://eudml.org/doc/297223>.

@article{Giscard2020,
abstract = {The time-ordered exponential of a time-dependent matrix $\mathsf \{A\}(t)$ is defined as the function of $\mathsf \{A\}(t)$ that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in $\mathsf \{A\}(t)$. The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by $\ast $. Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed to be proved. Here we constructively prove that $\ast $-inverses exist for all non-identically null, smooth, separable functions of two variables. As a corollary, we partially solve the Green’s function inverse problem which, given a distribution $G$, asks for the differential operator whose fundamental solution is $G$. Our results are abundantly illustrated by examples.},
author = {Giscard, Pierre-Louis, Pozza, Stefano},
journal = {Applications of Mathematics},
keywords = {time-ordering; matrix differential equation; time-ordered exponential; Lanczos algorithm; fundamental solution},
language = {eng},
number = {6},
pages = {807-827},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem},
url = {http://eudml.org/doc/297223},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Giscard, Pierre-Louis
AU - Pozza, Stefano
TI - Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 6
SP - 807
EP - 827
AB - The time-ordered exponential of a time-dependent matrix $\mathsf {A}(t)$ is defined as the function of $\mathsf {A}(t)$ that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in $\mathsf {A}(t)$. The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by $\ast $. Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed to be proved. Here we constructively prove that $\ast $-inverses exist for all non-identically null, smooth, separable functions of two variables. As a corollary, we partially solve the Green’s function inverse problem which, given a distribution $G$, asks for the differential operator whose fundamental solution is $G$. Our results are abundantly illustrated by examples.
LA - eng
KW - time-ordering; matrix differential equation; time-ordered exponential; Lanczos algorithm; fundamental solution
UR - http://eudml.org/doc/297223
ER -

References

top
  1. Benner, P., Cohen, A., Ohlberger, M., (eds.), K. Willcox, 10.1137/1.9781611974829, Computational Science & Engineering 15. SIAM, Philadelphia (2017). (2017) Zbl1378.65010MR3672144DOI10.1137/1.9781611974829
  2. Blanes, S., 10.1007/s11075-014-9894-0, Numer. Algorithms 69 (2015), 271-290. (2015) Zbl1317.65144MR3350382DOI10.1007/s11075-014-9894-0
  3. Bouhamidi, A., 10.1051/proc:072007, ESAIM, Proc. 20 (2007), 72-82. (2007) Zbl1359.35233MR2402761DOI10.1051/proc:072007
  4. Corless, M. J., Frazho, A. E., 10.1201/9780203911372, Pure and Applied Mathematics, Marcel Dekker 254. Marcel Dekker, New York (2003). (2003) Zbl1050.93001DOI10.1201/9780203911372
  5. Fasshauer, G. E., Ye, Q., 10.1007/s10444-011-9264-6, Adv. Comput. Math. 38 (2013), 891-921. (2013) Zbl1267.41018MR3044643DOI10.1007/s10444-011-9264-6
  6. Giscard, P.-L., On the solutions of linear Volterra equations of the second kind with sum kernels, (to appear) in J. Integral Equations Appl. Available at https://arxiv.org/abs/1909.04033v2 (2020), 25 pages. 
  7. Giscard, P.-L., Lui, K., Thwaite, S. J., Jaksch, D., 10.1063/1.4920925, J. Math. Phys. 56 (2015), Article ID 053503, 18 pages. (2015) Zbl1316.15010MR3391006DOI10.1063/1.4920925
  8. Giscard, P.-L., Pozza, S., Lanczos-like method for the time-ordered exponential, Available at https://arxiv.org/abs/1909.03437 (2019), 26 pages. (2019) MR4191370
  9. Giscard, P.-L., Pozza, S., Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method, Available at https://arxiv.org/abs/2002.06973 (2020), 23 pages. (2020) 
  10. Golub, G. H., Meurant, G., Matrices, moments and quadrature, Numerical Analysis 1993 Pitman Research Notes in Mathematics Series 303. Longman Scientific & Technical, Harlow (1994), 105-156. (1994) Zbl0795.65019MR1267758
  11. Golub, G. H., Meurant, G., 10.1515/9781400833887, Princeton Series in Applied Mathematics 30. Princeton University Press, Princeton (2010). (2010) Zbl1217.65056MR2582949DOI10.1515/9781400833887
  12. Gripenberg, G., Londen, S.-O., Staffans, O., 10.1017/CBO9780511662805, Encyclopedia of Mathematics and Its Applications 34. Cambridge University Press, Cambridge (1990). (1990) Zbl0695.45002MR1050319DOI10.1017/CBO9780511662805
  13. Kwakernaak, H., Sivan, R., Linear Optimal Control Systems, Wiley-Interscience, New York (1972). (1972) Zbl0276.93001MR0406607
  14. Liesen, J., Strakoš, Z., 10.1093/acprof:oso/9780199655410.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). (2013) Zbl1307.65001MR3024841DOI10.1093/acprof:oso/9780199655410.001.0001
  15. Linz, P., 10.1137/1.9781611970852, SIAM Studies in Applied Mathematics 7. SIAM, Philadelphia (1985). (1985) Zbl0566.65094MR0796318DOI10.1137/1.9781611970852
  16. Mehring, M., Weberruss, V. A., 10.1016/C2009-0-21093-2, Academic Press, London (2012). (2012) DOI10.1016/C2009-0-21093-2
  17. Polyanin, A. D., Manzhirov, A. V., 10.1201/9781420010558, Chapman & Hall/CRC Press, Boca Raton (2008). (2008) Zbl1154.45001MR2404728DOI10.1201/9781420010558
  18. Razdolsky, L., 10.1007/978-3-319-41909-1_2, Probability Based High Temperature Engineering Springer, Cham (2017), 55-100. (2017) DOI10.1007/978-3-319-41909-1_2
  19. Reid, W. T., 10.2140/pjm.1963.13.665, Pac. J. Math. 13 (1963), 665-685. (1963) Zbl0119.07401MR0155049DOI10.2140/pjm.1963.13.665
  20. Rivas, Á., Huelga, S. F., 10.1007/978-3-642-23354-8, SpringerBriefs in Physics. Springer, Berlin (2012). (2012) Zbl1246.81006MR2848650DOI10.1007/978-3-642-23354-8
  21. Saad, Y., 10.1137/1.9780898718003, SIAM, Philadelphia (2003). (2003) Zbl1031.65046MR1990645DOI10.1137/1.9780898718003
  22. Schwartz, L., Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg IX-X. Hermann, Paris (1966), French. (1966) Zbl0149.09501MR0209834
  23. Sezer, M., 10.1080/0020739940250501, Int. J. Math. Educ. Sci. Technol. 25 (1994), 625-633. (1994) Zbl0823.45005MR1295324DOI10.1080/0020739940250501
  24. Tricomi, F. G., Integral Equations, Dover Publications, New York (1985). (1985) Zbl0078.09404MR0809184

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.