Dual-terminal event triggered control for cyber-physical systems under false data injection attacks

Zhiwen Wang; Xiangnan Xu; Hongtao Sun; Long Li

Kybernetika (2020)

  • Volume: 56, Issue: 2, page 323-339
  • ISSN: 0023-5954

Abstract

top
This paper deals with the problem of security-based dynamic output feedback control of cyber-physical systems (CPSs) with the dual-terminal event triggered mechanisms (DT-ETM) under false data injection (FDI) attacks. Considering the limited attack energy, FDI attacks taking place in transmission channels are modeled as extra bounded disturbances for the resulting closed-loop system, thus enabling H performance analysis with a suitable ϱ attenuation level. Then two buffers at the controller and actuator sides are skillfully introduced to cope with the different transmission delays in such a way to facilitate the subsequent security analysis. Next, a dynamic output feedback security control (DOFSC) model based on the DT-ETM schemes under FDI attacks is well constructed. Furthermore, novel criteria for stability analysis and robust stabilization are carefully derived by exploiting Lyapunov-Krasovskii theory and LMIs technique. Finally, an illustrative example is provided to show the effectiveness of the proposed method.

How to cite

top

Wang, Zhiwen, et al. "Dual-terminal event triggered control for cyber-physical systems under false data injection attacks." Kybernetika 56.2 (2020): 323-339. <http://eudml.org/doc/297408>.

@article{Wang2020,
abstract = {This paper deals with the problem of security-based dynamic output feedback control of cyber-physical systems (CPSs) with the dual-terminal event triggered mechanisms (DT-ETM) under false data injection (FDI) attacks. Considering the limited attack energy, FDI attacks taking place in transmission channels are modeled as extra bounded disturbances for the resulting closed-loop system, thus enabling $H_\{\infty \}$ performance analysis with a suitable $\varrho $ attenuation level. Then two buffers at the controller and actuator sides are skillfully introduced to cope with the different transmission delays in such a way to facilitate the subsequent security analysis. Next, a dynamic output feedback security control (DOFSC) model based on the DT-ETM schemes under FDI attacks is well constructed. Furthermore, novel criteria for stability analysis and robust stabilization are carefully derived by exploiting Lyapunov-Krasovskii theory and LMIs technique. Finally, an illustrative example is provided to show the effectiveness of the proposed method.},
author = {Wang, Zhiwen, Xu, Xiangnan, Sun, Hongtao, Li, Long},
journal = {Kybernetika},
keywords = {cyber-physical system; FDI attacks; Event-triggered mechanisms; dynamic output feedback security control},
language = {eng},
number = {2},
pages = {323-339},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Dual-terminal event triggered control for cyber-physical systems under false data injection attacks},
url = {http://eudml.org/doc/297408},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Wang, Zhiwen
AU - Xu, Xiangnan
AU - Sun, Hongtao
AU - Li, Long
TI - Dual-terminal event triggered control for cyber-physical systems under false data injection attacks
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 2
SP - 323
EP - 339
AB - This paper deals with the problem of security-based dynamic output feedback control of cyber-physical systems (CPSs) with the dual-terminal event triggered mechanisms (DT-ETM) under false data injection (FDI) attacks. Considering the limited attack energy, FDI attacks taking place in transmission channels are modeled as extra bounded disturbances for the resulting closed-loop system, thus enabling $H_{\infty }$ performance analysis with a suitable $\varrho $ attenuation level. Then two buffers at the controller and actuator sides are skillfully introduced to cope with the different transmission delays in such a way to facilitate the subsequent security analysis. Next, a dynamic output feedback security control (DOFSC) model based on the DT-ETM schemes under FDI attacks is well constructed. Furthermore, novel criteria for stability analysis and robust stabilization are carefully derived by exploiting Lyapunov-Krasovskii theory and LMIs technique. Finally, an illustrative example is provided to show the effectiveness of the proposed method.
LA - eng
KW - cyber-physical system; FDI attacks; Event-triggered mechanisms; dynamic output feedback security control
UR - http://eudml.org/doc/297408
ER -

References

top
  1. Ashibani, Y., Mahmoud, Q. H., , Computers Security 68 (2017), 81-97. DOI
  2. Ding, D., Han, Q.-L., Wang, Z., Ge, X., , IEEE Trans. Industr. Inform. 15(2019), 5, 2483-2499. DOI
  3. Ding, D., Wang, Z., Ho, D., Wei, G., , Automatica 78 (2017), 231-240. MR3614098DOI
  4. García-Rivera, M., Barreiro, A., , Automatica 43 (2007), 2054-2059. MR2571732DOI
  5. Ge, X., Han, Q.-L., Wang, Z., , IEEE Trans. Cybernet. 49 (2019), 1148-1159. DOI
  6. Ge, X., Han, Q.-L., Zhang, X.-M., Ding, D., Yang, F., , Inform. Sci. (2019). MR4038642DOI
  7. Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F., , IEEE Trans. Cybernet., to be published. DOI
  8. Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M., , Automatica 109 (2019), 108557. MR3998774DOI
  9. Humayed, A., Lin, J., Li, F., Luo, B., , IEEE Internet Things J. 4 (2017), 1802-1831. DOI
  10. Liang, G., Weller, S. R., Zhao, J., Luo, F., Dong, Z., , IEEE Trans. Power Systems 32 (2017), 3317-.3318. DOI
  11. Liu, C., Li, H., Shi, Y., Xu, D., , IEEE Trans. Automat. Control (2019). DOI
  12. Liu, C., Li, H., Shi, Y., Xu, D., , IEEE Trans. Automat. Control (2019). MR4052877DOI
  13. Liu, Y., Ning, P., Reiter, M., , ACM Trans. Inform. System Security 14 (2011), 1-33. DOI
  14. Lu, A.-Y., Yang, G.-H., , Inform. Sci. 508 (2020), 92-104. MR3998228DOI
  15. Lu, A.-Y., Yang, G.-H., , IEEE Trans. Automat. Control (2019). DOI
  16. Pang, Z., Liu, G., Zhou, D., Hou, F., Sun, D., , IEEE Trans. Industr. Electron. 63 (2016), 3242-3251. DOI
  17. Park, P., Ko, J. W., Jeong, C., , Automatica 47 (2011), 235-238. MR2878269DOI
  18. Peng, C., Sun, H., Yang, M., Wang, Y., , IEEE Trans. Systems Man Cybernet.: Systems. 49 (2019), 1554-1569. MR0697005DOI
  19. Peng, D., Dong, J., Cai, Z., Zhang, C., Peng, Q., , J. Automat. 45 (2019), 196-205. DOI
  20. Shi, L., Dai, Q., Ni, Y., , Electr. Power Syst. Res. 163 (2018), 396-412. DOI
  21. Song, L., Wu, J., Long, C., Li, S., , In: 37th Chinese Automation Congress (2018), Xi'an, pp. 2530-2535. DOI
  22. Song, Z., Zhai, J., Ye, H., , Kybernetika 53 (2017), 263-281. MR3661352DOI
  23. Teixeira, A., Shames, I., Sandberg, H., H.Johansson, K., , Automatica 51 (2015), 135-148. MR3284762DOI
  24. Wang, Q., Tai, W., Tang, Y., Ni, M., , J. Automat. 45 (2019), 72-83. DOI
  25. Wang, D., Wu, S., Zhang, W., Wang, G., Wu, F., Okubo, S., , Kybernetika 52 (2016), 478-495. MR3532518DOI
  26. Xiao, S., Han, Q.-L., Ge, X., Zhang, Y., , IEEE Trans. Cybernet., to be published. DOI
  27. Yan, S., Nguang, S. K., Zhang, L., , Complexity ID 8194606 (2019), 14 pages. DOI
  28. Yu, W., Deng, Z., Zhou, H., Zeng, X., , Kybernetika 53 (2017), 747-764. MR3750101DOI
  29. Zeng, W., Chow, M.-Y., , IEEE Trans. Industr. Electr. 59 (2012), 3016-3025. DOI
  30. Zhang, X.-M., Han, Q.-L., , IET Control Theory Appl. 8 (2014), 226-234. MR3202366DOI
  31. Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C., , IEEE/CAA J. Automat. Sinica, to be published. MR3748030DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.