A note on the volume of -Einstein manifolds with skew-torsion

Ioannis Chrysikos

Communications in Mathematics (2021)

  • Volume: 29, Issue: 3, page 385-393
  • ISSN: 1804-1388

Abstract

top
We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew-torsion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M. Ville [Vil] related with the first variation of the volume on a compact Einstein manifold.

How to cite

top

Chrysikos, Ioannis. "A note on the volume of $\nabla $-Einstein manifolds with skew-torsion." Communications in Mathematics 29.3 (2021): 385-393. <http://eudml.org/doc/298101>.

@article{Chrysikos2021,
abstract = {We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew-torsion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M. Ville [Vil] related with the first variation of the volume on a compact Einstein manifold.},
author = {Chrysikos, Ioannis},
journal = {Communications in Mathematics},
keywords = {connections with totally skew-symmetric torsion; scalar curvature; $\nabla $-Einstein manifolds; parallel skew-torsion},
language = {eng},
number = {3},
pages = {385-393},
publisher = {University of Ostrava},
title = {A note on the volume of $\nabla $-Einstein manifolds with skew-torsion},
url = {http://eudml.org/doc/298101},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Chrysikos, Ioannis
TI - A note on the volume of $\nabla $-Einstein manifolds with skew-torsion
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 385
EP - 393
AB - We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew-torsion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M. Ville [Vil] related with the first variation of the volume on a compact Einstein manifold.
LA - eng
KW - connections with totally skew-symmetric torsion; scalar curvature; $\nabla $-Einstein manifolds; parallel skew-torsion
UR - http://eudml.org/doc/298101
ER -

References

top
  1. Agricola, I., Ferreira, A.C., 10.1093/qmath/hat050, Oxford Quart. J., 65, 2014, 717-741, (2014) MR3261964DOI10.1093/qmath/hat050
  2. Agricola, I., Friedrich, Th., 10.1007/s00208-003-0507-9, Math. Ann., 328, 2004, 711-748, (2004) Zbl1055.53031MR2047649DOI10.1007/s00208-003-0507-9
  3. Agricola, I., Becker-Bender, J., Kim, H., 10.1016/j.aim.2013.05.001, Adv. Math., 243, 2013, 296-329, (2013) MR3062748DOI10.1016/j.aim.2013.05.001
  4. Ammann, B., Bär, C., The Einstein-Hilbert action as a spectral action, Noncommutative Geometry and the Standard Model of Elementary Particle Physics, 2002, 75-108, (2002) MR1998531
  5. Besse, A.L., Einstein manifolds, 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, (1987) Zbl0613.53001
  6. Chrysikos, I., Invariant connections with skew-torsion and -Einstein manifolds, J. Lie Theory, 26, 2016, 11-48, (2016) MR3384980
  7. Chrysikos, I., 10.1007/s10455-015-9483-z, Ann. Glob. Anal. Geom., 49, 2016, 105-141, (2016) MR3464216DOI10.1007/s10455-015-9483-z
  8. Chrysikos, I., 10.1007/s00006-017-0810-2, Adv. Appl. Clifford Algebras, 27, 2017, 3097-3127, (2017) MR3718180DOI10.1007/s00006-017-0810-2
  9. Chrysikos, I., Gustad, C. O'Cadiz, Winther, H., 10.1016/j.geomphys.2018.10.012, J. Geom. Phys., 138, 2019, 257-284, (2019) MR3945042DOI10.1016/j.geomphys.2018.10.012
  10. Draper, C.A., Garvin, A., Palomo, F.J., 10.1007/s10455-015-9489-6, Ann. Glob. Anal. Geom., 49, 2016, 213-251, (2016) MR3485984DOI10.1007/s10455-015-9489-6
  11. Draper, C.A., Garvin, A., Palomo, F.J., 10.1016/j.geomphys.2018.08.006, J. Geom. Phys., 134, 2017, 133-141, (2017) MR3886931DOI10.1016/j.geomphys.2018.08.006
  12. Friedrich, Th., Ivanov, S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., 6, 1962, 64-94, (1962) 
  13. Friedrich, Th., Kim, E.C., 10.1016/S0393-0440(99)00043-1, J. Geom. Phys., 33, 2000, 128-172, (2000) DOI10.1016/S0393-0440(99)00043-1
  14. Kühnel, W., Differential Geometry, Curves--Surfaces--Manifolds, 2002, Amer. Math. Soc. Student Math. Library, (2002) MR1882174
  15. Ville, M., Sur le volume des variétés riemanniennes pincées, Bulletin de la S. M. F., 115, 1987, 127-139, (1987) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.