Numerical radius inequalities for Hilbert -modules
Sadaf Fakri Moghaddam; Alireza Kamel Mirmostafaee
Mathematica Bohemica (2022)
- Volume: 147, Issue: 4, page 547-566
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFakri Moghaddam, Sadaf, and Kamel Mirmostafaee, Alireza. "Numerical radius inequalities for Hilbert $C^{*}$-modules." Mathematica Bohemica 147.4 (2022): 547-566. <http://eudml.org/doc/298846>.
@article{FakriMoghaddam2022,
abstract = {We present a new method for studying the numerical radius of bounded operators on Hilbert $C^*$-modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert $C^*$-module spaces.},
author = {Fakri Moghaddam, Sadaf, Kamel Mirmostafaee, Alireza},
journal = {Mathematica Bohemica},
keywords = {numerical radius; inner product space; $C^*$-algebra},
language = {eng},
number = {4},
pages = {547-566},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical radius inequalities for Hilbert $C^\{*\}$-modules},
url = {http://eudml.org/doc/298846},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Fakri Moghaddam, Sadaf
AU - Kamel Mirmostafaee, Alireza
TI - Numerical radius inequalities for Hilbert $C^{*}$-modules
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 547
EP - 566
AB - We present a new method for studying the numerical radius of bounded operators on Hilbert $C^*$-modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert $C^*$-module spaces.
LA - eng
KW - numerical radius; inner product space; $C^*$-algebra
UR - http://eudml.org/doc/298846
ER -
References
top- Bhunia, P., Bag, S., Paul, K., 10.1016/j.laa.2019.03.017, Linear Algebra Appl. 573 (2019), 166-177. (2019) Zbl07060568MR3933295DOI10.1016/j.laa.2019.03.017
- Dragomir, S. S., Some refinements of Schwarz inequality, Proceedings of the Simpozionul de Matematici si Aplicatii, Timisoara, Romania (1985), 13-16. (1985)
- Dragomir, S. S., 10.15352/bjma/1240336213, Banach J. Math. Anal. 1 (2007), 154-175. (2007) Zbl1136.47006MR2366098DOI10.15352/bjma/1240336213
- Dragomir, S. S., 10.1007/978-3-7643-8773-0_13, Inequalities and Applications International Series of Numerical Mathematics 157. Birkhäuser, Basel (2009), 135-146. (2009) Zbl1266.26036MR2758975DOI10.1007/978-3-7643-8773-0_13
- Dragomir, S. S., Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5 (2009), 269-278. (2009) Zbl1225.47008MR2567758
- Goldberg, M., Tadmor, E., 10.1016/0024-3795(82)90155-0, Linear Algebra Appl. 42 (1982), 263-284. (1982) Zbl0479.47002MR0656430DOI10.1016/0024-3795(82)90155-0
- Goldstein, A. A., Ryff, J. V., Clarke, L. E., 10.2307/2314992, Am. Math. Mon. 75 (1968), 309-310. (1968) MR1534789DOI10.2307/2314992
- Gustafson, K. E., Rao, D. K. M., 10.1007/978-1-4613-8498-4, Universitext. Springer, New York (1997). (1997) Zbl0874.47003MR1417493DOI10.1007/978-1-4613-8498-4
- Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). (1988) Zbl0634.26008MR0944909
- Hosseini, M. S., Omidvar, M. E., Moosavi, B., Moradi, H. R., 10.1515/gmj-2019-2053, Georgian Math. J. 28 (2021), 255-260. (2021) Zbl07339609MR4235824DOI10.1515/gmj-2019-2053
- Kadison, R. V., Ringrose, J. R., Fundamentals of the Theory of Operator Algebras. Vol. 1. Elementary Theory, Pure and Applied Mathematics 100. Academic Press, New York (1983). (1983) Zbl0518.46046MR0719020
- Kaplansky, I., 10.2307/2372552, Am. J. Math. 75 (1953), 839-858. (1953) Zbl0051.09101MR0058137DOI10.2307/2372552
- Kittaneh, F., 10.2977/prims/1195175202, Publ. Res. Inst. Math. Sci. 24 (1988), 283-293. (1988) Zbl0655.47009MR0944864DOI10.2977/prims/1195175202
- Kittaneh, F., 10.4064/sm168-1-5, Stud. Math. 168 (2005), 73-80. (2005) Zbl1072.47004MR2133388DOI10.4064/sm168-1-5
- Lance, E. C., 10.1017/CBO9780511526206, London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge (1995). (1995) Zbl0822.46080MR1325694DOI10.1017/CBO9780511526206
- McCarthy, C. A., 10.1007/BF02771613, Isr. J. Math. 5 (1967), 249-271. (1967) Zbl0156.37902MR0225140DOI10.1007/BF02771613
- Mehrazin, M., Amyari, M., Omidvar, M. E., 10.1007/s12215-018-0385-3, Rend. Circ. Mat. Palermo (2) 69 (2020), 29-37. (2020) Zbl07193605MR4148774DOI10.1007/s12215-018-0385-3
- Mirmostafaee, A. K., Rahpeyma, O. P., Omidvar, M. E., 10.2478/dema-2014-0076, Demonstr. Math. 47 (2014), 963-970. (2014) Zbl1304.47007MR3290398DOI10.2478/dema-2014-0076
- Moosavi, B., Hosseini, M. S., Some inequalities for the numerical radius for operators in Hilbert -modules space, J. Inequal. Spec. Funct. 10 (2019), 77-84. (2019) MR4016178
- Murphy, G. J., -Algebras and Operator Theory, Academic Press, Boston (1990). (1990) Zbl0714.46041MR1074574
- Paschke, W. L., 10.1090/S0002-9947-1973-0355613-0, Trans. Am. Math. Soc. 182 (1973), 443-468. (1973) Zbl0239.46062MR0355613DOI10.1090/S0002-9947-1973-0355613-0
- Rieffel, M. A., 10.1016/0001-8708(74)90068-1, Adv. Math. 13 (1974), 176-257. (1974) Zbl0284.46040MR0353003DOI10.1016/0001-8708(74)90068-1
- Sattari, M., Moslehian, M. S., Yamazaki, T., 10.1016/j.laa.2014.08.003, Linear Algebra Appl. 470 (2015), 216-227. (2015) Zbl1322.47010MR3314313DOI10.1016/j.laa.2014.08.003
- Yamazaki, T., 10.4064/sm178-1-5, Stud. Math. 178 (2007), 83-89. (2007) Zbl1114.47003MR2282491DOI10.4064/sm178-1-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.