Numerical radius inequalities for Hilbert C * -modules

Sadaf Fakri Moghaddam; Alireza Kamel Mirmostafaee

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 4, page 547-566
  • ISSN: 0862-7959

Abstract

top
We present a new method for studying the numerical radius of bounded operators on Hilbert C * -modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert C * -module spaces.

How to cite

top

Fakri Moghaddam, Sadaf, and Kamel Mirmostafaee, Alireza. "Numerical radius inequalities for Hilbert $C^{*}$-modules." Mathematica Bohemica 147.4 (2022): 547-566. <http://eudml.org/doc/298846>.

@article{FakriMoghaddam2022,
abstract = {We present a new method for studying the numerical radius of bounded operators on Hilbert $C^*$-modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert $C^*$-module spaces.},
author = {Fakri Moghaddam, Sadaf, Kamel Mirmostafaee, Alireza},
journal = {Mathematica Bohemica},
keywords = {numerical radius; inner product space; $C^*$-algebra},
language = {eng},
number = {4},
pages = {547-566},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical radius inequalities for Hilbert $C^\{*\}$-modules},
url = {http://eudml.org/doc/298846},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Fakri Moghaddam, Sadaf
AU - Kamel Mirmostafaee, Alireza
TI - Numerical radius inequalities for Hilbert $C^{*}$-modules
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 547
EP - 566
AB - We present a new method for studying the numerical radius of bounded operators on Hilbert $C^*$-modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert $C^*$-module spaces.
LA - eng
KW - numerical radius; inner product space; $C^*$-algebra
UR - http://eudml.org/doc/298846
ER -

References

top
  1. Bhunia, P., Bag, S., Paul, K., 10.1016/j.laa.2019.03.017, Linear Algebra Appl. 573 (2019), 166-177. (2019) Zbl07060568MR3933295DOI10.1016/j.laa.2019.03.017
  2. Dragomir, S. S., Some refinements of Schwarz inequality, Proceedings of the Simpozionul de Matematici si Aplicatii, Timisoara, Romania (1985), 13-16. (1985) 
  3. Dragomir, S. S., 10.15352/bjma/1240336213, Banach J. Math. Anal. 1 (2007), 154-175. (2007) Zbl1136.47006MR2366098DOI10.15352/bjma/1240336213
  4. Dragomir, S. S., 10.1007/978-3-7643-8773-0_13, Inequalities and Applications International Series of Numerical Mathematics 157. Birkhäuser, Basel (2009), 135-146. (2009) Zbl1266.26036MR2758975DOI10.1007/978-3-7643-8773-0_13
  5. Dragomir, S. S., Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5 (2009), 269-278. (2009) Zbl1225.47008MR2567758
  6. Goldberg, M., Tadmor, E., 10.1016/0024-3795(82)90155-0, Linear Algebra Appl. 42 (1982), 263-284. (1982) Zbl0479.47002MR0656430DOI10.1016/0024-3795(82)90155-0
  7. Goldstein, A. A., Ryff, J. V., Clarke, L. E., 10.2307/2314992, Am. Math. Mon. 75 (1968), 309-310. (1968) MR1534789DOI10.2307/2314992
  8. Gustafson, K. E., Rao, D. K. M., 10.1007/978-1-4613-8498-4, Universitext. Springer, New York (1997). (1997) Zbl0874.47003MR1417493DOI10.1007/978-1-4613-8498-4
  9. Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). (1988) Zbl0634.26008MR0944909
  10. Hosseini, M. S., Omidvar, M. E., Moosavi, B., Moradi, H. R., 10.1515/gmj-2019-2053, Georgian Math. J. 28 (2021), 255-260. (2021) Zbl07339609MR4235824DOI10.1515/gmj-2019-2053
  11. Kadison, R. V., Ringrose, J. R., Fundamentals of the Theory of Operator Algebras. Vol. 1. Elementary Theory, Pure and Applied Mathematics 100. Academic Press, New York (1983). (1983) Zbl0518.46046MR0719020
  12. Kaplansky, I., 10.2307/2372552, Am. J. Math. 75 (1953), 839-858. (1953) Zbl0051.09101MR0058137DOI10.2307/2372552
  13. Kittaneh, F., 10.2977/prims/1195175202, Publ. Res. Inst. Math. Sci. 24 (1988), 283-293. (1988) Zbl0655.47009MR0944864DOI10.2977/prims/1195175202
  14. Kittaneh, F., 10.4064/sm168-1-5, Stud. Math. 168 (2005), 73-80. (2005) Zbl1072.47004MR2133388DOI10.4064/sm168-1-5
  15. Lance, E. C., 10.1017/CBO9780511526206, London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge (1995). (1995) Zbl0822.46080MR1325694DOI10.1017/CBO9780511526206
  16. McCarthy, C. A., 10.1007/BF02771613, Isr. J. Math. 5 (1967), 249-271. (1967) Zbl0156.37902MR0225140DOI10.1007/BF02771613
  17. Mehrazin, M., Amyari, M., Omidvar, M. E., 10.1007/s12215-018-0385-3, Rend. Circ. Mat. Palermo (2) 69 (2020), 29-37. (2020) Zbl07193605MR4148774DOI10.1007/s12215-018-0385-3
  18. Mirmostafaee, A. K., Rahpeyma, O. P., Omidvar, M. E., 10.2478/dema-2014-0076, Demonstr. Math. 47 (2014), 963-970. (2014) Zbl1304.47007MR3290398DOI10.2478/dema-2014-0076
  19. Moosavi, B., Hosseini, M. S., Some inequalities for the numerical radius for operators in Hilbert C * -modules space, J. Inequal. Spec. Funct. 10 (2019), 77-84. (2019) MR4016178
  20. Murphy, G. J., C * -Algebras and Operator Theory, Academic Press, Boston (1990). (1990) Zbl0714.46041MR1074574
  21. Paschke, W. L., 10.1090/S0002-9947-1973-0355613-0, Trans. Am. Math. Soc. 182 (1973), 443-468. (1973) Zbl0239.46062MR0355613DOI10.1090/S0002-9947-1973-0355613-0
  22. Rieffel, M. A., 10.1016/0001-8708(74)90068-1, Adv. Math. 13 (1974), 176-257. (1974) Zbl0284.46040MR0353003DOI10.1016/0001-8708(74)90068-1
  23. Sattari, M., Moslehian, M. S., Yamazaki, T., 10.1016/j.laa.2014.08.003, Linear Algebra Appl. 470 (2015), 216-227. (2015) Zbl1322.47010MR3314313DOI10.1016/j.laa.2014.08.003
  24. Yamazaki, T., 10.4064/sm178-1-5, Stud. Math. 178 (2007), 83-89. (2007) Zbl1114.47003MR2282491DOI10.4064/sm178-1-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.