Particles in the superworldline and BRST
Archivum Mathematicum (2022)
- Volume: 058, Issue: 5, page 259-267
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBoffo, Eugenia. "Particles in the superworldline and BRST." Archivum Mathematicum 058.5 (2022): 259-267. <http://eudml.org/doc/298929>.
@article{Boffo2022,
abstract = {In this short note we discuss $N$-supersymmetric worldlines of relativistic massless particles and review the known result that physical spin-$N/2$ fields are in the first BRST cohomology group. For $N=1,2,4$, emphasis is given to particular deformations of the BRST differential, that implement either a covariant derivative for a gauge theory or a metric connection in the target space seen by the particle. In the end, we comment about the possibility of incorporating Ramond-Ramond fluxes in the background.},
author = {Boffo, Eugenia},
journal = {Archivum Mathematicum},
keywords = {supersymmetry; spin; BRST cohomology; gauge theories; gravity},
language = {eng},
number = {5},
pages = {259-267},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Particles in the superworldline and BRST},
url = {http://eudml.org/doc/298929},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Boffo, Eugenia
TI - Particles in the superworldline and BRST
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 5
SP - 259
EP - 267
AB - In this short note we discuss $N$-supersymmetric worldlines of relativistic massless particles and review the known result that physical spin-$N/2$ fields are in the first BRST cohomology group. For $N=1,2,4$, emphasis is given to particular deformations of the BRST differential, that implement either a covariant derivative for a gauge theory or a metric connection in the target space seen by the particle. In the end, we comment about the possibility of incorporating Ramond-Ramond fluxes in the background.
LA - eng
KW - supersymmetry; spin; BRST cohomology; gauge theories; gravity
UR - http://eudml.org/doc/298929
ER -
References
top- Batalin, I.A., Vilkovisky, G.A., 10.1103/PhysRevD.28.2567, Phys. Rev. D 28 (1983), 2567–2582, [Erratum: Phys.Rev.D 30, 508 (1984)]. (1983) MR0726170DOI10.1103/PhysRevD.28.2567
- Becchi, C., Rouet, A., Stora, R., 10.1016/0003-4916(76)90156-1, Annals Phys. 98 (1976), 287–321. (1976) MR0413861DOI10.1016/0003-4916(76)90156-1
- Boffo, E., Sachs, I., Spin fields for the spinning particle, JHEP 10 117 (2022). (2022) MR4498771
- Bonezzi, R., Meyer, A., Sachs, I., Einstein gravity from the spinning particle, JHEP 10 (2018), 24 pp. (2018) MR3891071
- Bonezzi, R., Meyer, A., Sachs, I., A worldline theory for supergravity, JHEP 06 (2020), 26 pp. (2020) MR4133900
- Brink, L., Di Vecchia, P., Howe, P.S., 10.1016/0550-3213(77)90364-9, Nuclear Phys. B 118 (1977), 76–94. (1977) MR0426651DOI10.1016/0550-3213(77)90364-9
- Corradini, O., Schubert, C., Edwards, J.P., Ahmadiniaz, N., Spinning particles in quantum mechanics and quantum field theory, arXiv:1512.08694, 12 2015. (2015)
- Dai, P., Huang, Y.T., Siegel, W., Worldgraph approach to Yang-Mills amplitudes from N=2 spinning particle, JHEP 10 (2008), 20 pp. (2008) MR2453018
- Figueroa-O’Farrill, J., BRST cohomology, http://www.maths.ed.ac.uk/empg/Activities/BRST.
- Losev, I., 10.1016/j.aim.2012.06.017, Adv. Math. 231 (3) (2012), 1216–1270. (2012) MR2964603DOI10.1016/j.aim.2012.06.017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.