Equivalence bimodule between non-commutative tori

Sei-Qwon Oh; Chun-Gil Park

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 2, page 289-294
  • ISSN: 0011-4642

Abstract

top
The non-commutative torus C * ( n , ω ) is realized as the C * -algebra of sections of a locally trivial C * -algebra bundle over S ω ^ with fibres isomorphic to C * ( n / S ω , ω 1 ) for a totally skew multiplier ω 1 on n / S ω . D. Poguntke [9] proved that A ω is stably isomorphic to C ( S ω ^ ) C * ( n / S ω , ω 1 ) C ( S ω ^ ) A ϕ M k l ( ) for a simple non-commutative torus A ϕ and an integer k l . It is well-known that a stable isomorphism of two separable C * -algebras is equivalent to the existence of equivalence bimodule between them. We construct an A ω - C ( S ω ^ ) A ϕ -equivalence bimodule.

How to cite

top

Oh, Sei-Qwon, and Park, Chun-Gil. "Equivalence bimodule between non-commutative tori." Czechoslovak Mathematical Journal 53.2 (2003): 289-294. <http://eudml.org/doc/30777>.

@article{Oh2003,
abstract = {The non-commutative torus $C^*(\mathbb \{Z\}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat\{S_\{\omega \}\}$ with fibres isomorphic to $C^*(\mathbb \{Z\}^n/S_\{\omega \}, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb \{Z\}^n/S_\{\omega \}$. D. Poguntke [9] proved that $A_\{\omega \}$ is stably isomorphic to $C(\widehat\{S_\{\omega \}\}) \otimes C^*(\mathbb \{Z\}^n/S_\{\omega \}, \omega _1) \cong C(\widehat\{S_\{\omega \}\}) \otimes A_\{\varphi \} \otimes M_\{kl\}(\mathbb \{C\})$ for a simple non-commutative torus $A_\{\varphi \}$ and an integer $kl$. It is well-known that a stable isomorphism of two separable $C^*$-algebras is equivalent to the existence of equivalence bimodule between them. We construct an $A_\{\omega \}$-$C(\widehat\{S_\{\omega \}\}) \otimes A_\{\varphi \}$-equivalence bimodule.},
author = {Oh, Sei-Qwon, Park, Chun-Gil},
journal = {Czechoslovak Mathematical Journal},
keywords = {Morita equivalent; twisted group $C^*$-algebra; crossed product; Morita equivalent; twisted group -algebra; crossed product},
language = {eng},
number = {2},
pages = {289-294},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equivalence bimodule between non-commutative tori},
url = {http://eudml.org/doc/30777},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Oh, Sei-Qwon
AU - Park, Chun-Gil
TI - Equivalence bimodule between non-commutative tori
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 289
EP - 294
AB - The non-commutative torus $C^*(\mathbb {Z}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega }}$ with fibres isomorphic to $C^*(\mathbb {Z}^n/S_{\omega }, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb {Z}^n/S_{\omega }$. D. Poguntke [9] proved that $A_{\omega }$ is stably isomorphic to $C(\widehat{S_{\omega }}) \otimes C^*(\mathbb {Z}^n/S_{\omega }, \omega _1) \cong C(\widehat{S_{\omega }}) \otimes A_{\varphi } \otimes M_{kl}(\mathbb {C})$ for a simple non-commutative torus $A_{\varphi }$ and an integer $kl$. It is well-known that a stable isomorphism of two separable $C^*$-algebras is equivalent to the existence of equivalence bimodule between them. We construct an $A_{\omega }$-$C(\widehat{S_{\omega }}) \otimes A_{\varphi }$-equivalence bimodule.
LA - eng
KW - Morita equivalent; twisted group $C^*$-algebra; crossed product; Morita equivalent; twisted group -algebra; crossed product
UR - http://eudml.org/doc/30777
ER -

References

top
  1. 10.1016/0022-1236(73)90075-X, J.  Funct. Anal. 14 (1973), 299–324. (1973) MR0364537DOI10.1016/0022-1236(73)90075-X
  2. 10.1007/BF01193614, Arch. Math. 43 (1984), 79–83. (1984) MR0758343DOI10.1007/BF01193614
  3. 10.2140/pjm.1977.71.349, Pacific J.  Math. 71 (1977), 349–363. (1977) MR0463928DOI10.2140/pjm.1977.71.349
  4. 10.1017/S1446788700022576, J.  Austral. Math. Soc. (Series A) 38 (1985), 9–39. (1985) MR0765447DOI10.1017/S1446788700022576
  5. Representations of * -Algebras, Locally Compact Groups, and Banach * -Algebraic Bundles, Academic Press, San Diego, 1988. (1988) 
  6. On the K -theory of the C * -algebra generated by a projective representation of a torsion-free discrete abelian group, In: Operator Algebras and Group Representations, Vol.  1, Pitman, London, 1984, pp. 157–184. (1984) Zbl0542.46030MR0731772
  7. 10.1007/BF02392308, Acta Math. 140 (1978), 191–250. (1978) Zbl0407.46053MR0493349DOI10.1007/BF02392308
  8. 10.24033/asens.1444, Ann. Scient. Ec. Norm. Sup. 16 (1983), 151–172. (1983) Zbl0523.22007MR0719767DOI10.24033/asens.1444
  9. The structure of twisted convolution C * -algebras on abelian groups, J.  Operator Theory 38 (1997), 3–18. (1997) Zbl0924.46046MR1462012
  10. Morita equivalence for operator algebras, Operator Algebras and Applications. Proc. Symp. Pure Math. Vol. 38, R. V.  Kadison (ed.), Amer. Math. Soc., Providence, R. I., 1982, pp. 285–298. (1982) Zbl0541.46044MR0679708

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.