On pure quotients and pure subobjects
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 3, page 623-636
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAdámek, Jiří, and Rosický, Jiří. "On pure quotients and pure subobjects." Czechoslovak Mathematical Journal 54.3 (2004): 623-636. <http://eudml.org/doc/30887>.
@article{Adámek2004,
abstract = {In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients.},
author = {Adámek, Jiří, Rosický, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {pure quotient; pure subobject; locally presentable category; semi-abelian category; abelian category; pure quotient; pure subobject; locally presentable category; semi-abelian category; abelian category},
language = {eng},
number = {3},
pages = {623-636},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On pure quotients and pure subobjects},
url = {http://eudml.org/doc/30887},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Adámek, Jiří
AU - Rosický, Jiří
TI - On pure quotients and pure subobjects
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 623
EP - 636
AB - In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients.
LA - eng
KW - pure quotient; pure subobject; locally presentable category; semi-abelian category; abelian category; pure quotient; pure subobject; locally presentable category; semi-abelian category; abelian category
UR - http://eudml.org/doc/30887
ER -
References
top- Locally Presentable and Accessible Categories, Cambridge Univ. Press, Cambridge, 1994. (1994) MR1294136
- 10.1006/jabr.1999.8249, J. Algebra 228 (2000), 143–164. (2000) Zbl0969.18008MR1760960DOI10.1006/jabr.1999.8249
- Objects algébraiquement clos et injectifs dans les catégories localement présentables, Bull. Soc. Math. France 42 (1975). (1975) MR0401879
- Semi-abelian categories, 168 (2002), 367–386. (2002) MR1887164
- Catégories modélables et catégories esquissables, Diagrammes (1981), 1–20. (1981) Zbl0522.18008MR0684749
- 10.1090/conm/104, Contemp. Math. Vol. 104, Amer. Math. Soc., Providence, 1989. (1989) MR1031717DOI10.1090/conm/104
- Purity in model theory, In: Advances in Algebra and Model Theory, M. Droste and R. Göbel (eds.), Gordon and Breach, , 1997, pp. 445–469. (1997) Zbl0931.03055MR1687736
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.