A note on embedding into product spaces

M. A. Sofi

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 2, page 507-513
  • ISSN: 0011-4642

Abstract

top
Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of $E$, thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.

How to cite

top

Sofi, M. A.. "A note on embedding into product spaces." Czechoslovak Mathematical Journal 56.2 (2006): 507-513. <http://eudml.org/doc/31043>.

@article{Sofi2006,
abstract = {Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of $E$, thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.},
author = {Sofi, M. A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {factorization; embedding; operator ideal},
language = {eng},
number = {2},
pages = {507-513},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on embedding into product spaces},
url = {http://eudml.org/doc/31043},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Sofi, M. A.
TI - A note on embedding into product spaces
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 507
EP - 513
AB - Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of $E$, thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.
LA - eng
KW - factorization; embedding; operator ideal
UR - http://eudml.org/doc/31043
ER -

References

top
  1. 10.1090/S0002-9939-1974-0328557-4, Proc. Amer. Math. Soc. 42 (1974), 551–554. (1974) MR0328557DOI10.1090/S0002-9939-1974-0328557-4
  2. The Schwartz-Hilbert variety, Mich. Math. Jour. 22 (1975), 373–377. (1975) Zbl0308.46002MR0394086
  3. Absolutely Summing Operators, Cambridge University Press, London, 1995. (1995) MR1342297
  4. 10.1007/BF01629255, Math. Ann. 203 (1973), 211–214. (1973) MR0320700DOI10.1007/BF01629255
  5. 10.1016/0022-1236(79)90046-6, Jour. Func. Anal. 32 (1979), 353–380. (1979) MR0538861DOI10.1016/0022-1236(79)90046-6
  6. Locally Convex Spaces and Operator Ideals, Teubner, Stuttgart-Leipzig, 1983. (1983) MR0758254
  7. Operator Ideals, North Holland, Amsterdam, 1980. (1980) Zbl0455.47032MR0582655
  8. 10.1090/S0002-9939-1973-0312192-7, Proc. Amer. Math. Soc. 37 (1973), 185–188. (1973) MR0312192DOI10.1090/S0002-9939-1973-0312192-7
  9. 10.1090/S0002-9939-1976-0410316-7, Proc. Amer. Math. Soc. 55 (1976), 87–92. (1976) MR0410316DOI10.1090/S0002-9939-1976-0410316-7
  10. 10.1090/S0002-9939-1972-0318823-9, Proc. Amer. Math. Soc. 34 (1972), 138–140. (1972) Zbl0257.46006MR0318823DOI10.1090/S0002-9939-1972-0318823-9
  11. Topological Vector Spaces, Springer Verlag, , 1980. (1980) Zbl0435.46003MR0342978
  12. 10.1007/BF01191362, Arch. der Math. 47 (1986), 353–358. (1986) Zbl0577.46004MR0866524DOI10.1007/BF01191362
  13. Factoring $\lambda (P)$-nuclear operators over nuclear Frechet spaces, Jour. Math. Sciences, Part  I, 28 (1994), 267–281. (1994) 
  14. 10.1007/BF01222542, Arch. der Math. 22 (1971), 76-78. (1971) Zbl0215.20902MR0291865DOI10.1007/BF01222542
  15. Nuclearity and Banach spaces, Proc. Edinburgh Math. Soc. Ser.  2 20 (1977), 205–209. (1977) Zbl0354.46002MR0435778

NotesEmbed ?

top

You must be logged in to post comments.