Hopf bifurcation and ordinary differential inequalities

Jan Eisner; Milan Kučera

Czechoslovak Mathematical Journal (1995)

  • Volume: 45, Issue: 4, page 577-608
  • ISSN: 0011-4642

How to cite

top

Eisner, Jan, and Kučera, Milan. "Hopf bifurcation and ordinary differential inequalities." Czechoslovak Mathematical Journal 45.4 (1995): 577-608. <http://eudml.org/doc/31503>.

@article{Eisner1995,
author = {Eisner, Jan, Kučera, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hopf bifurcation; periodic solutions; ordinary differential inequality},
language = {eng},
number = {4},
pages = {577-608},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hopf bifurcation and ordinary differential inequalities},
url = {http://eudml.org/doc/31503},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Eisner, Jan
AU - Kučera, Milan
TI - Hopf bifurcation and ordinary differential inequalities
JO - Czechoslovak Mathematical Journal
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 4
SP - 577
EP - 608
LA - eng
KW - Hopf bifurcation; periodic solutions; ordinary differential inequality
UR - http://eudml.org/doc/31503
ER -

References

top
  1. Differential Inclusions, Springer Verlag, Berlin, 1984. (1984) MR0755330
  2. A bifurcation of periodic solutions to differential inequalities in R 3 , Czechoslovak Math. J. 42 (117) (1992), 339–363. (1992) MR1179505
  3. Branching of periodic solutions to differential inequalities, Thesis, Charles University, 1991. (Czech) (1991) 
  4. Bifurcation points of variational inequalities, Czechoslovak Math. J. 32 (107) (1982), 208–226. (1982) MR0654057
  5. A global continuation theorem for obtaining eigenvalues and bifurcation points, Czechoslovak Math. J. 38 (133) (1988), 120–137. (1988) MR0925946
  6. Bifurcation of periodic solutions to ordinary differential inequalities, Colloquia Math. Soc. J. Bolyai 62. Differential Equations, Budapest, 1991, pp. 227–255. (1991) MR1468758
  7. Stability of bifurcating periodic solutions of differential inequalities in R 3 , Berlin, 1994, Preprint No. 89, Institut für Angewandte Analysis und Stochastik. (1994) MR1666194
  8. Ordinary Differential Equations, Studies in Applied Mechanics 13, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986. (1986) Zbl0667.34002MR0929466
  9. Quelques méthodes de resolution de problemes aux limites non linéaires, Paris, 1969. (1969) MR0259693
  10. The Hopf Bifurcation Theorem and Applications, Springer, Berlin, 1976. (1976) MR0494309
  11. Topics in Nonlinear Functional Analysis, New York, 1974. (1974) Zbl0286.47037MR0488102
  12. Semi-groups of nonlinear contractions in Hilbert space, Problems in Nonlinear Analysis (C.I.M.E., IV Ciclo, Varenna 1970), Edizioni Cremonese, Rome, 1971, pp. 343–430. (1971) Zbl0228.47038MR0291877
  13. 10.1016/0022-1236(71)90030-9, J. Functional Analysis 7 (1971), 487–513. (1971) MR0301587DOI10.1016/0022-1236(71)90030-9
  14. Projections on convex sets in Hilbert space and spectral theory, Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York, 1971. (1971) Zbl0281.47043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.