The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in n

Reinhard Farwig; Hermann Sohr

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 1, page 61-79
  • ISSN: 0011-4642

Abstract

top
For a bounded domain Ω n , n 3 , we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system - Δ u + u · u + p = f , div u = k , u | Ω = g with u L q , q n , and very general data classes for f , k , g such that u may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of papers by Frehse Růžička, see e.g. Existence of regular solutions to the stationary Navier-Stokes equations, Math. Ann. 302 (1995), 669–717, where the existence of a weak solution which is locally regular is proved.

How to cite

top

Farwig, Reinhard, and Sohr, Hermann. "Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in $\mathbb {R}^n$." Czechoslovak Mathematical Journal 59.1 (2009): 61-79. <http://eudml.org/doc/37908>.

@article{Farwig2009,
abstract = {For a bounded domain $\Omega \subset \mathbb \{R\} ^n$, $n\ge 3,$ we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system $-\Delta u + u \cdot \nabla u + \nabla p=f$, $\operatorname\{div\}u = k$, $u_\{|_\{\partial \Omega \}\}=g$ with $u \in L^q$, $q \ge n$, and very general data classes for $f$, $k$, $g$ such that $u$ may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of papers by Frehse Růžička, see e.g. Existence of regular solutions to the stationary Navier-Stokes equations, Math. Ann. 302 (1995), 669–717, where the existence of a weak solution which is locally regular is proved.},
author = {Farwig, Reinhard, Sohr, Hermann},
journal = {Czechoslovak Mathematical Journal},
keywords = {stationary Stokes and Navier-Stokes system; very weak solutions; existence and uniqueness in higher dimensions; regularity classes in higher dimensions; stationary Stokes system; Navier-Stokes system, very weak solution; regularity class; higher dimension},
language = {eng},
number = {1},
pages = {61-79},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/37908},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Farwig, Reinhard
AU - Sohr, Hermann
TI - Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in $\mathbb {R}^n$
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 61
EP - 79
AB - For a bounded domain $\Omega \subset \mathbb {R} ^n$, $n\ge 3,$ we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system $-\Delta u + u \cdot \nabla u + \nabla p=f$, $\operatorname{div}u = k$, $u_{|_{\partial \Omega }}=g$ with $u \in L^q$, $q \ge n$, and very general data classes for $f$, $k$, $g$ such that $u$ may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of papers by Frehse Růžička, see e.g. Existence of regular solutions to the stationary Navier-Stokes equations, Math. Ann. 302 (1995), 669–717, where the existence of a weak solution which is locally regular is proved.
LA - eng
KW - stationary Stokes and Navier-Stokes system; very weak solutions; existence and uniqueness in higher dimensions; regularity classes in higher dimensions; stationary Stokes system; Navier-Stokes system, very weak solution; regularity class; higher dimension
UR - http://eudml.org/doc/37908
ER -

References

top
  1. Adams, R. A., Sobolev Spaces, Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
  2. Amann, H., 10.1007/978-1-4615-0701-7_1, Int. Math. Ser., Kluwer Academic/Plenum Publishing, New York (2002), 1-28. (2002) MR1971987DOI10.1007/978-1-4615-0701-7_1
  3. Amann, H., 10.2991/jnmp.2003.10.s1.1, J. Nonlinear Math. Physics 10 (2003), 1-11. (2003) MR2063541DOI10.2991/jnmp.2003.10.s1.1
  4. Borchers, W., Miyakawa, T., 10.32917/hmj/1206128724, Hiroshima Math. J. 21 (1991), 621-640. (1991) MR1148998DOI10.32917/hmj/1206128724
  5. Bogovskij, M. E., Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Soviet Math. Dokl. 20 (1979), 1094-1098. (1979) Zbl0499.35022
  6. Cannone, M., Viscous flows in Besov spaces, Advances in Math. Fluid Mech., Springer, Berlin (2000), 1-34. (2000) Zbl0980.35125MR1863208
  7. Fabes, E. B., Jones, B. F., Rivière, N. M., 10.1007/BF00281533, Arch. Rational Mech. Anal. 45 (1972), 222-240. (1972) MR0316915DOI10.1007/BF00281533
  8. Farwig, R., Sohr, H., 10.2969/jmsj/04640607, J. Math. Soc. Japan 46 (1994), 607-643. (1994) Zbl0819.35109MR1291109DOI10.2969/jmsj/04640607
  9. Farwig, R., Galdi, G. P., Sohr, H., 10.1007/s00021-005-0182-6, J. Math. Fluid Mech. 8 (2006), 423-444. (2006) Zbl1104.35032MR2258419DOI10.1007/s00021-005-0182-6
  10. Frehse, J., Růžička, M., 10.1007/BF00995129, Acta Appl. Math. 37 53-66 (1994). (1994) MR1308745DOI10.1007/BF00995129
  11. Frehse, J., Růžička, M., 10.1007/BF00387714, Arch. Rational Mech. Anal. 128 361-380 (1994). (1994) MR1308859DOI10.1007/BF00387714
  12. Frehse, J., Růžička, M., On the regularity of the stationary Navier-Stokes equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 21 63-95 (1994). (1994) MR1276763
  13. Frehse, J., Růžička, M., 10.1007/BF01444513, Math. Ann. 302 669-717 (1995). (1995) MR1343646DOI10.1007/BF01444513
  14. Frehse, J., Růžička, M., Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 23 701-719 (1996). (1996) MR1469571
  15. Frehse, J., Růžička, M., 10.1142/9789812816740_0013, Proc. 3rd Intern. Conf. Navier-Stokes Equations: theory and numerical methods. World Scientific Ser. Adv. Math. Appl. Sci., Singapore 47 159-178 (1998). (1998) MR1643033DOI10.1142/9789812816740_0013
  16. Frehse, J., Růžička, M., A new regularity criterion for steady Navier-Stokes equations, Differential Integral Equations 11 (1998), 361-368. (1998) MR1741851
  17. Fujiwara, D., Morimoto, H., An L r -theory of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo (1A) 24 (1977), 685-700. (1977) MR0492980
  18. Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Linearized Steady Problems, Springer Tracts in Natural Philosophy, Vol. 38, Springer-Verlag, New York (1998). (1998) MR2808162
  19. Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, Vol. 39, New York (1998). (1998) MR2808162
  20. Galdi, G. P., Simader, C. G., Sohr, H., 10.1007/s00208-004-0573-7, Math. Ann. 331 (2005), 41-74. (2005) Zbl1064.35133MR2107439DOI10.1007/s00208-004-0573-7
  21. Gerhardt, C., 10.1007/BF01182469, Math. Z. 165 (1979), 193-197. (1979) MR0520820DOI10.1007/BF01182469
  22. Giga, Y., 10.1007/BF01214869, Math. Z. 178 (1981), 287-329. (1981) Zbl0473.35064MR0635201DOI10.1007/BF01214869
  23. Giga, Y., 10.1007/BF00276874, Arch. Rational Mech. Anal. 89 (1985), 251-265. (1985) MR0786549DOI10.1007/BF00276874
  24. Giga, Y., Sohr, H., On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo, Sec. IA 36 (1989), 103-130. (1989) MR0991022
  25. Giga, Y., Sohr, H., 10.1016/0022-1236(91)90136-S, J. Funct. Anal. 102 (1991), 72-94. (1991) Zbl0739.35067MR1138838DOI10.1016/0022-1236(91)90136-S
  26. Kato, T., 10.1007/BF01174182, Math. Z. 187 (1984), 471-480. (1984) MR0760047DOI10.1007/BF01174182
  27. Kozono, H., Yamazaki, M., Local and global solvability of the Navier-Stokes exterior problem with Cauchy data in the space L n , , Houston J. Math. 21 (1995), 755-799. (1995) MR1368344
  28. Nečas, J., Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague (1967). (1967) MR0227584
  29. Simader, C. G., Sohr, H., 10.1142/9789814503594_0001, Adv. Math. Appl. Sci., World Scientific 11 (1992), 1-35. (1992) MR1190728DOI10.1142/9789814503594_0001
  30. Solonnikov, V. A., 10.1007/BF01084616, J. Soviet Math. 8 (1977), 467-528. (1977) Zbl0404.35081DOI10.1007/BF01084616
  31. Sohr, H., The Navier-Stokes equations. An elementary functional analytic approach, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel (2001). (2001) Zbl0983.35004MR1928881
  32. Temam, R., Navier-Stokes Equations. Theory and numerical analysis, North-Holland, Amsterdam, New York, Tokyo (1984). (1984) Zbl0568.35002MR0769654
  33. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978). (1978) Zbl0387.46033MR0503903
  34. Wahl, W. von, Regularity of weak solutions of the Navier-Stokes equations, Proc. Symp. Pure Math. 45 (1986), 497-503. (1986) MR0843635

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.