The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Harmonic interpolating sequences, L p and BMO

John B. Garnett

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 4, page 215-228
  • ISSN: 0373-0956

Abstract

top
Let ( z ν ) be a sequence in the upper half plane. If 1 < p and if y ν 1 / p f ( z ν ) = a ν , ν = 1 , 2 , ... ( * ) has solution f ( z ) in the class of Poisson integrals of L p functions for any sequence ( a ν ) p , then we show that ( z ν ) is an interpolating sequence for H . If f ( z ν ) = a ν , ν = 1 , 2 , ... has solution in the class of Poisson integrals of BMO functions whenever ( a ν ) , then ( z ν ) is again an interpolating sequence for H . A somewhat more general theorem is also proved and a counterexample for the case p 1 is described.

How to cite

top

Garnett, John B.. "Harmonic interpolating sequences, $L^p$ and BMO." Annales de l'institut Fourier 28.4 (1978): 215-228. <http://eudml.org/doc/74382>.

@article{Garnett1978,
abstract = {Let $(z_\nu )$ be a sequence in the upper half plane. If $1&lt; p\le \infty $ and if\begin\{\}y^\{1/p\}\_\nu f(z\_\nu ) = a\_\nu ,~\nu =1,2,\ldots \qquad (*)\end\{\}has solution $f(z)$ in the class of Poisson integrals of $L^p$ functions for any sequence $(a_\nu ) \in \ell ^p$, then we show that $(z_\nu )$ is an interpolating sequence for $H^\infty $. If $f(z_\nu ) = a_\nu $, $\nu =1,2,\ldots $ has solution in the class of Poisson integrals of BMO functions whenever $(a_\nu ) \in \ell ^\infty $, then $(z_\nu )$ is again an interpolating sequence for $H^\infty $. A somewhat more general theorem is also proved and a counterexample for the case $p\le 1$ is described.},
author = {Garnett, John B.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {215-228},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harmonic interpolating sequences, $L^p$ and BMO},
url = {http://eudml.org/doc/74382},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Garnett, John B.
TI - Harmonic interpolating sequences, $L^p$ and BMO
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 4
SP - 215
EP - 228
AB - Let $(z_\nu )$ be a sequence in the upper half plane. If $1&lt; p\le \infty $ and if\begin{}y^{1/p}_\nu f(z_\nu ) = a_\nu ,~\nu =1,2,\ldots \qquad (*)\end{}has solution $f(z)$ in the class of Poisson integrals of $L^p$ functions for any sequence $(a_\nu ) \in \ell ^p$, then we show that $(z_\nu )$ is an interpolating sequence for $H^\infty $. If $f(z_\nu ) = a_\nu $, $\nu =1,2,\ldots $ has solution in the class of Poisson integrals of BMO functions whenever $(a_\nu ) \in \ell ^\infty $, then $(z_\nu )$ is again an interpolating sequence for $H^\infty $. A somewhat more general theorem is also proved and a counterexample for the case $p\le 1$ is described.
LA - eng
UR - http://eudml.org/doc/74382
ER -

References

top
  1. [1] Eric AMAR, Interpolation Lp, to appear. 
  2. [2] D. BURKHOLDER, R. GUNDY and M. SILVERSTEIN, A maximal function characterization of the class Hp, Trans. A.M.S., 157 (1971), 137-157. Zbl0223.30048MR43 #527
  3. [3] L. CARLESON, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921-930. Zbl0085.06504MR22 #8129
  4. [4] L. CARLESON and J. GARNETT, Interpolating sequences and separation properties, Jour. d'Analyse Math., 28 (1975), 273-299. Zbl0347.30032
  5. [5] R. COIFMAN, R. ROCHBERG and G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635. Zbl0326.32011MR54 #843
  6. [6] R. COIFMAN and G. WEISS, Extensions of Hardy spaces and their use in analysis, Bull. A.M.S., 83 (1977), 569-645. Zbl0358.30023MR56 #6264
  7. [7] P. R. DUREN, Theory of Hp Spaces, Academic Press, New York, 1970. Zbl0215.20203MR42 #3552
  8. [8] C. FEFFERMAN and E. STEIN, Hp spaces of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
  9. [9] J. GARNETT, Interpolating sequences for bounded harmonic functions, Indiana U. Math. J., 21 (1971), 187-192. Zbl0236.30042MR44 #1814
  10. [10] L. HÖRMANDER, Lp estimates for (pluri-) subharmonic functions, Math. Scand., 20 (1967), 65-78. Zbl0156.12201
  11. [11] E. M. STEIN, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, 1972. Zbl0242.32005MR57 #12890
  12. [12] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR44 #7280
  13. [13] N. VAROPOULOS, Sur un problème d'interpolation, C.R. Acad. Sci. Paris, Ser. A, 274 (1972), 1539-1542. Zbl0236.41001MR46 #2417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.