The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Homogeneous hessian manifolds

Hirohiko Shima

Annales de l'institut Fourier (1980)

  • Volume: 30, Issue: 3, page 91-128
  • ISSN: 0373-0956

Abstract

top
A flat affine manifold is said to Hessian if it is endowed with a Riemannian metric whose local expression has the form g i j = 2 Φ x i x j where Φ is a C -function and { x 1 , ... , x n } is an affine local coordinate system. Let M be a Hessian manifold. We show that if M is homogeneous, the universal covering manifold of M is a convex domain in R n and admits a uniquely determined fibering, whose base space is a homogeneous convex domain not containing any full straight line, and whose fiber is an affine subspace of R n .

How to cite

top

Shima, Hirohiko. "Homogeneous hessian manifolds." Annales de l'institut Fourier 30.3 (1980): 91-128. <http://eudml.org/doc/74467>.

@article{Shima1980,
abstract = {A flat affine manifold is said to Hessian if it is endowed with a Riemannian metric whose local expression has the form $g_\{ij\}=\{\partial ^2\Phi \over \partial x^i\partial x^j\}$ where $\Phi $ is a $C^\infty $-function and $\lbrace x^1,\ldots ,x^n\rbrace $ is an affine local coordinate system. Let $M$ be a Hessian manifold. We show that if $M$ is homogeneous, the universal covering manifold of $M$ is a convex domain in $\{\bf R\}^n$ and admits a uniquely determined fibering, whose base space is a homogeneous convex domain not containing any full straight line, and whose fiber is an affine subspace of $\{\bf R\}^n$.},
author = {Shima, Hirohiko},
journal = {Annales de l'institut Fourier},
keywords = {homogeneous hessian manifolds; affine manifold; universal covering manifold; base space},
language = {eng},
number = {3},
pages = {91-128},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homogeneous hessian manifolds},
url = {http://eudml.org/doc/74467},
volume = {30},
year = {1980},
}

TY - JOUR
AU - Shima, Hirohiko
TI - Homogeneous hessian manifolds
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 3
SP - 91
EP - 128
AB - A flat affine manifold is said to Hessian if it is endowed with a Riemannian metric whose local expression has the form $g_{ij}={\partial ^2\Phi \over \partial x^i\partial x^j}$ where $\Phi $ is a $C^\infty $-function and $\lbrace x^1,\ldots ,x^n\rbrace $ is an affine local coordinate system. Let $M$ be a Hessian manifold. We show that if $M$ is homogeneous, the universal covering manifold of $M$ is a convex domain in ${\bf R}^n$ and admits a uniquely determined fibering, whose base space is a homogeneous convex domain not containing any full straight line, and whose fiber is an affine subspace of ${\bf R}^n$.
LA - eng
KW - homogeneous hessian manifolds; affine manifold; universal covering manifold; base space
UR - http://eudml.org/doc/74467
ER -

References

top
  1. [1] S.G. GINDIKIN, I.I. PJATECKII-SAPIRO and E.B. VINBERG, Homogeneous Kähler manifolds, in “Geometry of Homogeneous Bounded Domains”, Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87. Zbl0183.35401
  2. [2] P. DOMBROWSKI, On the geometry of the tangent bundles, J. Reine Angew. Math., 210 (1962), 73-88. Zbl0105.16002MR25 #4463
  3. [3] M. GOTO, Faithful representations of Lie groups I, Math. Japon., 1 (1948), 1-13. Zbl0041.36001
  4. [4] J. HELMSTETTER, Doctorat de 3e cycle “Radical et groupe formel d'une algèbre symétrique à gauche” novembre 1975, Grenoble. 
  5. [5] S. KOBAYASHI, Intrinsic distances associated with flat affine or projective structures, J. Fac. Sci. Univ. of Tokyo, IA 24 (1977), 129-135. Zbl0367.53002MR56 #3361
  6. [6] J.L. KOSZUL, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89 (1961), 515-533. Zbl0144.34002MR26 #3090
  7. [7] J.L. KOSZUL, Variétés localement plates et convexité, Osaka J. Math., 2 (1965), 285-290. Zbl0173.50001MR33 #4849
  8. [8] H. SHIMA, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math., 13 (1976), 213-229. Zbl0332.53032MR54 #1131
  9. [9] H. SHIMA, Symmetric spaces with invariant locally Hessian structures, J. Math. Soc. Japan, 29 (1977), 581-589. Zbl0349.53036MR56 #9462
  10. [10] H. SHIMA, Compact locally Hessian manifolds, Osaka J. Math., 15 (1978) 509-513. Zbl0415.53032MR80e:53054
  11. [11] J. VEY, Une notion d'hyperbolicité sur les variétés localement plates, C.R. Acad. Sci. Paris, 266 (1968), 622-624. Zbl0155.30602MR38 #5131
  12. [12] E.B. VINBERG, The Morozov-Borel theorem for real Lie groups, Soviet Math. Dokl., 2 (1961), 1416-1419. Zbl0112.02505MR26 #252
  13. [13] E.B. VINBERG, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340-403. Zbl0138.43301
  14. [14] E.B. VINBERG and S.G. GINDIKIN, Kaehlerian manifolds admitting a transitive solvable automorphism group, Math. Sb., 75 (116) (1967), 333-351. Zbl0172.37803
  15. [15] K. YOSHIDA, A theorem concerning the semi-simple Lie groups, Tohoku Math. J., 43 (Part II) (1937), 81-84. Zbl0018.29802

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.