On the existence of weighted boundary limits of harmonic functions

Yoshihiro Mizuta

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 4, page 811-833
  • ISSN: 0373-0956

Abstract

top
We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.

How to cite

top

Mizuta, Yoshihiro. "On the existence of weighted boundary limits of harmonic functions." Annales de l'institut Fourier 40.4 (1990): 811-833. <http://eudml.org/doc/74900>.

@article{Mizuta1990,
abstract = {We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.},
author = {Mizuta, Yoshihiro},
journal = {Annales de l'institut Fourier},
keywords = {Bessel capacity; tangential boundary limits; Lipschitz domain},
language = {eng},
number = {4},
pages = {811-833},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the existence of weighted boundary limits of harmonic functions},
url = {http://eudml.org/doc/74900},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Mizuta, Yoshihiro
TI - On the existence of weighted boundary limits of harmonic functions
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 4
SP - 811
EP - 833
AB - We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.
LA - eng
KW - Bessel capacity; tangential boundary limits; Lipschitz domain
UR - http://eudml.org/doc/74900
ER -

References

top
  1. [1] M. BRELOT, Élément de la théorie classique du potentiel, 4e édition, Centre de Documentation Universitaire, Paris, 1969. 
  2. [2] L. CARLESON, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967. Zbl0189.10903MR37 #1576
  3. [3] A. B. CRUZEIRO, Convergence au bord pour les fonctions harmoniques dans Rd de la classe de Sobolev Wd1, C.R.A.S., Paris, 294 (1982), 71-74. Zbl0495.31003MR83g:31006
  4. [4] N. G. MEYERS, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292. Zbl0242.31006MR43 #3474
  5. [5] Y. MIZUTA, On the Boundary limits of harmonic functions with gradient in Lp, Ann. Inst. Fourier, 34-1 (1984), 99-109. Zbl0522.31009MR85f:31009
  6. [6] Y. MIZUTA, On the boundary limits of harmonic functions, Hiroshima Math. J., 18 (1988), 207-217. Zbl0664.31007MR89d:31015
  7. [7] T. MURAI, On the behavior of functions with finite weighted Dirichlet integral near the boundary, Nagoya Math. J., 53 (1974), 83-101. Zbl0293.31012MR50 #626
  8. [8] A. NAGEL, W. RUDIN and J. H. SHAPIRO, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360. Zbl0531.31007MR84a:31002
  9. [9] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970. Zbl0207.13501MR44 #7280
  10. [10] H. WALLIN, on the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1985), 510-525. Zbl0139.06301MR32 #5911

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.