On the complex and convex geometry of Ol'shanskii semigroups

Karl-Hermann Neeb

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 1, page 149-203
  • ISSN: 0373-0956

Abstract

top
To a pair of a Lie group G and an open elliptic convex cone W in its Lie algebra one associates a complex semigroup S = G Exp ( i W ) which permits an action of G × G by biholomorphic mappings. In the case where W is a vector space S is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain D S is Stein is and only if it is of the form G Exp ( D h ) , with D h i W convex, that each holomorphic function on D extends to the smallest biinvariant Stein domain containing D , and that biinvariant plurisubharmonic functions on D correspond to invariant convex functions on D h .

How to cite

top

Neeb, Karl-Hermann. "On the complex and convex geometry of Ol'shanskii semigroups." Annales de l'institut Fourier 48.1 (1998): 149-203. <http://eudml.org/doc/75274>.

@article{Neeb1998,
abstract = {To a pair of a Lie group $G$ and an open elliptic convex cone $W$ in its Lie algebra one associates a complex semigroup $S=G\{\rm Exp\}(iW)$ which permits an action of $G\times G$ by biholomorphic mappings. In the case where $W$ is a vector space $S$ is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain $D\subseteq S$ is Stein is and only if it is of the form $G\{\rm Exp\}(D_h)$, with $Dh\subseteq iW$ convex, that each holomorphic function on $D$ extends to the smallest biinvariant Stein domain containing $D$, and that biinvariant plurisubharmonic functions on $D$ correspond to invariant convex functions on $D_h$.},
author = {Neeb, Karl-Hermann},
journal = {Annales de l'institut Fourier},
keywords = {Ol'shanskii semigroup; classical Lie group; real Lie group; complex reductive Lie group; Lie algebras},
language = {eng},
number = {1},
pages = {149-203},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the complex and convex geometry of Ol'shanskii semigroups},
url = {http://eudml.org/doc/75274},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Neeb, Karl-Hermann
TI - On the complex and convex geometry of Ol'shanskii semigroups
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 149
EP - 203
AB - To a pair of a Lie group $G$ and an open elliptic convex cone $W$ in its Lie algebra one associates a complex semigroup $S=G{\rm Exp}(iW)$ which permits an action of $G\times G$ by biholomorphic mappings. In the case where $W$ is a vector space $S$ is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain $D\subseteq S$ is Stein is and only if it is of the form $G{\rm Exp}(D_h)$, with $Dh\subseteq iW$ convex, that each holomorphic function on $D$ extends to the smallest biinvariant Stein domain containing $D$, and that biinvariant plurisubharmonic functions on $D$ correspond to invariant convex functions on $D_h$.
LA - eng
KW - Ol'shanskii semigroup; classical Lie group; real Lie group; complex reductive Lie group; Lie algebras
UR - http://eudml.org/doc/75274
ER -

References

top
  1. [AL92] H. AZAD and J.-J. LOEB, Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indag. Math. N. S., 3(4) (1992), 365-375. Zbl0777.32008MR94a:32014
  2. [Fe94] G. FELS, Differentialgeometrische Charakterisierung invarianter Holomorphiegebiete, Schriftenreihe des Graduiertenkollegs “Geometrische und mathematische Physik”, Universität Bochum, 7, 1994. Zbl0850.32001
  3. [He93] P. HEINZNER, Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France, 121 (1993), 445-463. Zbl0794.32022MR94i:32050
  4. [HHL89] J. HILGERT, K.H. HOFMANN and J.D. LAWSON, “Lie Groups, Convex Cones, and Semigroups”, Oxford University Press, 1989. Zbl0701.22001MR91k:22020
  5. [HiNe93] J. HILGERT and K.-H. NEEB, “Lie semigroups and their applications”, Lecture Notes in Math., 1552, Springer, 1993. Zbl0807.22001
  6. [HNP94] J. HILGERT, K.-H. NEEB and W. PLANK, Symplectic convexity theorems and coadjoint orbits, Comp. Math., 94 (1994), 129-180. Zbl0819.22006MR96d:53053
  7. [Hö73] L. HÖRMANDER, An introduction to complex analysis in several variables, North-Holland, 1973. Zbl0271.32001
  8. [Las78] M. LASALLE, Sur la transformation de Fourier-Laurent dans un groupe analytique complexe réductif, Ann. Inst. Fourier, Grenoble, 28-1 (1978), 115-138. Zbl0334.32028MR80b:32006
  9. [MaMo60] Y. MATSUSHIMA, and A. MORIMOTO, “Sur certains espaces fibrés holomorphes sur une variété de Stein”, Bull. Soc. Math. France, 88 (1960), 137-155. Zbl0094.28104MR23 #A1061
  10. [Ne94a] K.-H. NEEB, Holomorphic representation theory II, Acta Math., 173-1 (1994), 103-133. Zbl0842.22004MR96a:22025
  11. [Ne94b] K.-H. NEEB, Realization of general unitary highest weight representations, Preprint 1662, Technische Hochschule Darmstadts, 1994. 
  12. [Ne94c] K.-H. NEEB, A Duistermaat-Heckman formula for admissible coadjoint orbits, Proceedings of “Workshop on Lie Theory and its applications in Physics”, Clausthal, August, 1995, Eds. Doebner, Dobrev, to appear. Zbl0920.22009
  13. [Ne94d] K.-H. NEEB, A convexity theorem for semisimple symmetric spaces, Pacific Journal of Math., 162-2 (1994), 305-349. Zbl0809.53058MR95b:22016
  14. [Ne94e] K.-H. NEEB, On closedness and simple connectedness of adjoint and coadjoint orbits, Manuscripta Math., 82 (1994), 51-65. Zbl0815.22004MR94k:22012
  15. [Ne95a] K.-H. NEEB, Holomorphic representation theory I, Math., Ann., 301 (1995), 155-181. Zbl0829.43017MR96a:22024
  16. [Ne95b] K.-H. NEEB, Holomorphic representations of Ol'shanskiĠ semigroups, in “Semigroups in Algebra, Geometry and Analysis”, K. H. Hofmann et al., eds., de Gruyter, 1995. Zbl0851.22014MR97b:22017
  17. [Ne96a] K.-H. NEEB, Invariant Convex Sets and Functions in Lie Algebras, Semigroup Forum 53 (1996), 230-261. Zbl0873.17009MR97j:17033
  18. [Ne96b] K.-H. NEEB, Coherent states, holomorphic extensions, and highest weight representations, Pac. J. Math., 174-2 (1996), 497-542. Zbl0894.22008
  19. [Ne98] K.-H. NEEB, “Holomorphy and Convexity in Lie Theory”, de Gruyter, Expositions in Mathematics, to appear. Zbl0936.22001
  20. [Ra86] R. M. RANGE, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer Verlag, New York, 1986. Zbl0591.32002MR87i:32001
  21. [Ro63] H. ROSSI, On Envelopes of Holomorphy, Comm. on Pure and Appl. Math., 16 (1963), 9-17. Zbl0113.06001MR26 #6436

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.