Modular invariance property of association schemes, type II codes over finite rings and finite abelian groups and reminiscences of François Jaeger (a survey)

Eiichi Bannai

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 3, page 763-782
  • ISSN: 0373-0956

Abstract

top
Modular invariance property of association schemes is recalled in connection with our joint work with François Jaeger. Then we survey codes over F 2 discussing how codes, through their (various kinds of) weight enumerators, are related to (various kinds of) modular forms through polynomial invariants of certain finite group actions and theta series. Recently, not only codes over an arbitrary finite field but also codes over finite rings and finite abelian groups are considered and have been studied extensively. We show how the determination of the solutions of the modular invariance property of finite abelian groups (our joint work with Jaeger) is used to define the concept of Type II codes over arbitrary finite abelian groups. As an example of the usefulness of such Type II codes, we give an application to hermitian modular forms.

How to cite

top

Bannai, Eiichi. "Modular invariance property of association schemes, type II codes over finite rings and finite abelian groups and reminiscences of François Jaeger (a survey)." Annales de l'institut Fourier 49.3 (1999): 763-782. <http://eudml.org/doc/75361>.

@article{Bannai1999,
abstract = {Modular invariance property of association schemes is recalled in connection with our joint work with François Jaeger. Then we survey codes over $F_2$ discussing how codes, through their (various kinds of) weight enumerators, are related to (various kinds of) modular forms through polynomial invariants of certain finite group actions and theta series. Recently, not only codes over an arbitrary finite field but also codes over finite rings and finite abelian groups are considered and have been studied extensively. We show how the determination of the solutions of the modular invariance property of finite abelian groups (our joint work with Jaeger) is used to define the concept of Type II codes over arbitrary finite abelian groups. As an example of the usefulness of such Type II codes, we give an application to hermitian modular forms.},
author = {Bannai, Eiichi},
journal = {Annales de l'institut Fourier},
keywords = {modular invariance; association scheme; spin model; code over finite ring; type II code; hermitian modular form},
language = {eng},
number = {3},
pages = {763-782},
publisher = {Association des Annales de l'Institut Fourier},
title = {Modular invariance property of association schemes, type II codes over finite rings and finite abelian groups and reminiscences of François Jaeger (a survey)},
url = {http://eudml.org/doc/75361},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Bannai, Eiichi
TI - Modular invariance property of association schemes, type II codes over finite rings and finite abelian groups and reminiscences of François Jaeger (a survey)
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 763
EP - 782
AB - Modular invariance property of association schemes is recalled in connection with our joint work with François Jaeger. Then we survey codes over $F_2$ discussing how codes, through their (various kinds of) weight enumerators, are related to (various kinds of) modular forms through polynomial invariants of certain finite group actions and theta series. Recently, not only codes over an arbitrary finite field but also codes over finite rings and finite abelian groups are considered and have been studied extensively. We show how the determination of the solutions of the modular invariance property of finite abelian groups (our joint work with Jaeger) is used to define the concept of Type II codes over arbitrary finite abelian groups. As an example of the usefulness of such Type II codes, we give an application to hermitian modular forms.
LA - eng
KW - modular invariance; association scheme; spin model; code over finite ring; type II code; hermitian modular form
UR - http://eudml.org/doc/75361
ER -

References

top
  1. [1] C. BACHOC, Applications of coding theory to the construction of modular lattices, J. Combinatorial Theory, (A) 78 (1997), 173-187. Zbl0876.94053MR98a:11084
  2. [2] E. BANNAI, Association schemes and fusion algebras (an introduction), J. Algebraic Combinatorics, 2 (1993), 327-344. Zbl0790.05098MR94f:05148
  3. [3] E. BANNAI, Invariant rings of finite groups and automorphic forms (a survey) (in Japanese), Algebra Symposium Proceedings (at Yamagata University, July 24-27, 1996), 42 (1996), 173-187. 
  4. [4] E. BANNAI and E. BANNAI, Modular invariance of the character table of the Hamming association scheme H(d, q), J. Number Theory, 57 (1994), 79-92. Zbl0799.05068MR95a:05117
  5. [5] E. BANNAI and E. BANNAI, Generalized spin models and association schemes, Memoire of Fac. Sci. Kyushu University, Ser (A), 47 (1993), 379-409. Zbl0797.05082MR95b:05217
  6. [6] E. BANNAI, E. BANNAI, T. IKUTA and K. KAWAGOE, Spin models constructed from Hamming association schemes, Proceedings of 10th Algebraic Combinatorics Symposium at Gifu, 1992, 91-106. 
  7. [7] E. BANNAI, E. BANNAI and F. JAEGER, On spin models, modular invariance, and duality, J. Algebraic Combinatorics, 6 (1997), 203-228. Zbl0880.05083
  8. [8] E. BANNAI, E. BANNAI, M. OZEKI and Y. TERANISHI, On the ring of simultaneous invariants of the Gleason-MacWilliams group (preprint). Zbl0944.15022
  9. [9] E. BANNAI, S. DOUGHERTY, M. HARADA and M. OURA, The II codes, even unimodular lattices and invariant rings, IEEE Trans. Inform. Theory (to appear). Zbl0958.94042
  10. [10] E. BANNAI, M. HARADA, A. MUNEMASA and M. OURA, Type II codes over F2+uF2 and applications to hermitian modular forms (a tentative title), in preparation. Zbl0957.11501
  11. [11] E. BANNAI and T. ITO, Algebraic Combinatorics, I, Benjamin/Cummings, 1984. Zbl0555.05019MR87m:05001
  12. [12] E. BANNAI and M. OZEKI, Construction of Jacobi forms from certain combinatorial polynomials, Proc. Japan Acad. (A), 72 (1996), 12-15. Zbl0860.11026MR98a:11060
  13. [12bis] Etsuko BANNAI and A. MUNEMASA, Duality maps of finite abelian groups and their applications to spin models, J. Algebraic Combinatorics, 8 (1998), 223-234. Zbl0927.05084MR99j:20058
  14. [13] A. BONNECAZE, P. SOLÉ, C. BACHOC and B. MOURRAIN, Type II codes over Z4, IEEE Trans. Inform. Theory, 43 (1997), 969-976. Zbl0898.94009MR98e:94025
  15. [14] M. BROUÉ and M. ENGUEHARD, Polynômes des poids de certains codes et fonctions theta de certains réseaux, Ann. Sci. Ecole Norm. Sup., 5 (1972), 157-181. Zbl0254.94016MR48 #3596
  16. [15] J. H. CONWAY and N. J. A. SLOANE, Sphere Packings, Lattices and Groups, Springer-Verlag, 1988. Zbl0634.52002
  17. [16] B. CURTIN and K. NOMURA, Some formulas for spin models for distance-regular graphs (to appear). Zbl0930.05101
  18. [17] P. DELSARTE, An algebraic approach to the association schemes of coding theory, Philips Research Reports Supplments, 10 (1973), 125-136. Zbl1075.05606
  19. [18] S. T. DOUGHERTY, P. GABORIT, M. HARADA and P. SOLÉ, Type II codes over F2 + uF2, IEEE Trans. Inform. Theory (to appear). Zbl0947.94023
  20. [19] S. T. DOUGHERTY, T. A. GULLIVER and M. HARADA, Type II self-dual codes over finite rings and even unimodular lattices, J. Algebraic Combinatorics (to appear). Zbl0958.94037
  21. [20] W. DUKE, On codes and Siegel modular forms, International Math. Res. Notes, (1993), 125-136. Zbl0785.94008MR94d:11029
  22. [21] W. EBELING, Lattices and Codes, a course partially based on lectures by F. Hirzebruch, Vieweg, 1994. Zbl0805.11048
  23. [22] M. EICHLER and D. ZAGIER, The Theory of Jacobi Forms, Birkhauser, 1985. Zbl0554.10018MR86j:11043
  24. [23] E. FREITAG, Siegelsche Modulfunktionen, Springer, 1983. Zbl0498.10016MR88b:11027
  25. [24] E. FREITAG, Modulformen zweiten Grades zum rationalen und Gausssehen Zahlkorper, Sitzungsber. Heidelberg Akad. Wiss., 1967, 3-49. Zbl0156.09203
  26. [25] P. GABORIT, Mass formulas for self-dual codes over Z4 and Fq + uFq rings, IEEE Trans. on Inf. Theory, 42 (1996), 1222-1228. Zbl0854.94013MR99c:94042
  27. [26] A. M. GLEASON, Weight polynomials of self-dual codes and the MacWilliams identities, Actes Congrès Intern. Math., 3 (1970), 211-215. Zbl0287.05010MR54 #12354
  28. [27] A. R. HAMMONS, JR., P. V. KUMAR, A. R. CALDERBANK, N. J. A. SLOANE and P. SOLÉ, The Z4-linearlity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. on Inf. Theory, 40 (1994), 301-319. Zbl0811.94039
  29. [28] J. IGUSA, On Siegel modular forms of genus 2, (1) and (II), Amer. J. Math., 84, 88 (1962) (1966), 175-200, 221-236. 
  30. [29] F. JAEGER, Strongly regular graphs and spin models for the Kauffman polynomial, Geomet. Dedicata, 44 (1992), 23-52. Zbl0773.57005MR94e:57008
  31. [30] F. JAEGER, Spin models for link invariants, in “Survey in Combinatorics, 1995”, London Math. Soc., Lecture Notes Series, 218 (1995), 71-101. Zbl0831.05064MR96j:57008
  32. [31] F. JAEGER, Towards a classification of spin models in terms of association schemes, in Progress in Algebraic Combinatorics, Advanced Studies in Pure Math., 24 (1996), 197-225. Zbl0864.05089MR98g:57012
  33. [32] F. JAEGER, M. MATSUMOTO and K. NOMURA, Bose-Mesner algebras related to Type II matrices and spin models, J. Algebraic Combinatorics, 8 (1998), 39-72. Zbl0974.05084MR99f:05125
  34. [33] Y. KAWADA, Uber den Dualitatssatz der Charactere nichtcommutativer Gruppen, Proc. Phys, Math. Soc. Japan, 24 (1942), 97-109. Zbl0063.03172
  35. [34] A. KRIEG, Modular Forms on Half-Spaces of Quaternions, Springer Lecture Note Series, 1143 (1985). Zbl0564.10032MR87f:11033
  36. [35] F. J. MACWILLIAMS and N. J. A. SLOANE, The Theory of Error Correcting Codes, North-Holland, 1977. Zbl0369.94008
  37. [36] B. R. MCDONALD, Finite Rings with Identity, Marcel Dekker, 1974. Zbl0294.16012MR50 #7245
  38. [37] S. NAGAOKA, A note on the structure of the ring of symmetric Hermitian modular forms of degree 2 over the Gaussian field, J. Math. Soc. Japan, 48 (1996), 525-549. Zbl0872.11027MR97i:11052
  39. [38] K. NOMURA, Spin models constructed from Hadamard matrices, J. Combinatorial Theory (A), 68 (1994), 251-261. Zbl0808.05100MR95k:05185
  40. [39] K. NOMURA, An algebra associated with a spin model, J. Algebraic Combinatorics, 6 (1997), 53-58. Zbl0865.05077MR98g:05158
  41. [40] K. NOMURA, Spin models and Bose-Mesner algebras, Europ. J. Comb., (to appear). Zbl0936.05089
  42. [41] M. OURA, The dimension formula for the ring of code polynomials in genus 4, Osaka J. Math., 34 (1997), 53-72. Zbl0909.11019MR98f:11039
  43. [42] M. OZEKI, On the notion of Jacobi polynomials for codes, Math. Proc. Cambridge Phil. Soc., 121 (1997), 15-30. Zbl0888.94028MR98b:11126
  44. [43] B. RUNGE, On Siegel modular forms, part I, J. reine angew. Math., 436 (1993), 57-85. Zbl0772.11015MR94c:11041
  45. [44] B. RUNGE, Theta functions and Siegel-Jacobi forms, Acta Mathematica, 175 (1995), 165-196. Zbl0882.11028MR96m:11036
  46. [45] G. C. SHEPHARD and J. A. TODD, Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274-304. Zbl0055.14305MR15,600b
  47. [46] D. STANTON, A matrix equation for association schemes, Graphs and Combinatorics, 11 (1995), 103-108. Zbl0828.05065MR97b:05172
  48. [47] S. TSUYUMINE, On Siegel modular forms of degree three, Amer. J. Math., 108 (1986), 755-862. Zbl0602.10015MR88a:11047a
  49. [48] J. A. WOOD, Duality for modules over finite rings and applications to coding theory (preprint). Zbl0968.94012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.