Produced representations of Lie algebras and superfields

Rogier Brussee

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 50, Issue: 1, page 1-15
  • ISSN: 0246-0211

How to cite

top

Brussee, Rogier. "Produced representations of Lie algebras and superfields." Annales de l'I.H.P. Physique théorique 50.1 (1989): 1-15. <http://eudml.org/doc/76434>.

@article{Brussee1989,
author = {Brussee, Rogier},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {produced representations; Lie superalgebras; Poincaré superalgebra; Minkowski superspace},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Gauthier-Villars},
title = {Produced representations of Lie algebras and superfields},
url = {http://eudml.org/doc/76434},
volume = {50},
year = {1989},
}

TY - JOUR
AU - Brussee, Rogier
TI - Produced representations of Lie algebras and superfields
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 1
EP - 15
LA - eng
KW - produced representations; Lie superalgebras; Poincaré superalgebra; Minkowski superspace
UR - http://eudml.org/doc/76434
ER -

References

top
  1. [1] R.J. Blattner, Induced and produced representation of Lie algebras. Trans. A. M. S., V. 144, 1969, p. 457-474. Zbl0295.17002MR308223
  2. [2] M. Batchelor, Graded manifolds and supermanifolds in Mathematical aspects of 
  3. Annales de l'Institut Henri Poincaré - Physique théorique 
  4. superspace (proc. Hamburg), ed. C. J. S. Clarke, A. Rosenblum and H. J. Seifert, Reidel, Dordrecht, 1981. 
  5. [3] L. Corwin, Y. Ne'eman and S. Sternberg, Graded Lie algebras in mathematics and physics. Rev. of modern phys., V. 47, 1975, p. 573-603. Zbl0557.17004MR438925
  6. [4] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974; English Translation : Enveloping algebras, North Holland, Amsterdam, 1977. Zbl0308.17007MR498737
  7. [5] R. Hartshorne, Algebraic Geometry. G. T. M.52Springer, New York, Berlin, Heidelberg, 1977. Zbl0367.14001MR463157
  8. [6] J.E. Humphreys, Introduction to Lie algebras and representation theorie. G. T. M.9 Third rev. ed. Springer, New York, Berlin, Heidelberg, 1970. Zbl0254.17004
  9. [7] B. Kostant, Graded manifolds, graded Lie theory, and prequantisation in Differential geometric methods in mathematical physics (proc. Bonn, 1975), p. 177-306, L. N. S.570, Springer, New York, Berlin, Heidelberg, 1977. Zbl0358.53024MR580292
  10. [8] D. Leites, Introduction to the theory of supermanifolds. Russian math. surveys, V. 35, p. 1-64. Zbl0462.58002MR565567
  11. [9] A. Rogers, Aspects of the geometrical approach to supermanifolds in Mathematical aspects of superspace (proc. Hamburg), ed. C. J. S. Clarke, A. Rosenblum and H. J. Seifert, Reidel, Dordrecht, 1981. MR773081
  12. [10] A. Salam and J. Strathdee, Nucl. Phys., V. B 76, 1974, p. 477. MR356737
  13. [11] A. Salam and J. Strathdee, Phys. Rev., V. D 11, 1974, p. 1521. MR408630
  14. [12] M.F. Sohnius, Introducing supersymmetry. Phys. reports, V. 128, 1985, p. 2-3. MR811842
  15. [13] M. Sweedler, Hopf algebras. Benjamin, New York, 1969. Zbl0194.32901MR252485
  16. [14] B. De Witt, Supermanifolds, Cambridge University Press, Cambridge, 1984. Zbl0551.53002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.