Infinite volume asymptotics of the ground state energy in a scaled poissonian potential

Franz Merkl; Mario V. Wüthrich

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 3, page 253-284
  • ISSN: 0246-0203

How to cite

top

Merkl, Franz, and Wüthrich, Mario V.. "Infinite volume asymptotics of the ground state energy in a scaled poissonian potential." Annales de l'I.H.P. Probabilités et statistiques 38.3 (2002): 253-284. <http://eudml.org/doc/77716>.

@article{Merkl2002,
author = {Merkl, Franz, Wüthrich, Mario V.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random Schrödinger operator; ground state energy},
language = {eng},
number = {3},
pages = {253-284},
publisher = {Elsevier},
title = {Infinite volume asymptotics of the ground state energy in a scaled poissonian potential},
url = {http://eudml.org/doc/77716},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Merkl, Franz
AU - Wüthrich, Mario V.
TI - Infinite volume asymptotics of the ground state energy in a scaled poissonian potential
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 3
SP - 253
EP - 284
LA - eng
KW - random Schrödinger operator; ground state energy
UR - http://eudml.org/doc/77716
ER -

References

top
  1. [1] M. Abramowitz, A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1972. 
  2. [2] M. van den Berg, E. Bolthausen, F. den Hollander, Moderate deviations for the volume of the Wiener sausage, Annals of Mathematics153 (2) (2001) 355-406. Zbl1004.60021MR1829754
  3. [3] E.H. Lieb, M. Loss, Analysis, in: Graduate Studies in Mathematics, 14, American Mathematical Society, RI, 1997. Zbl0873.26002MR1415616
  4. [4] F. Merkl, M.V. Wüthrich, Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential, Probab. Theory Related Fields119 (4) (2001) 475-507. Zbl1037.82022MR1826404
  5. [5] M. Reed, B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self Adjointness, Academic Press, San Diego, 1975. Zbl0308.47002MR493420
  6. [6] M. Reed, B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, San Diego, 1978. Zbl0401.47001MR493421
  7. [7] B. Simon, Functional Integration and Quantum Physics, Academic Press, New York, 1979. Zbl0434.28013MR544188
  8. [8] A.S. Sznitman, Shape theorem, Lyapounov exponents and large deviations for Brownian motion in a Poissonian potential, Comm. Pure. Appl. Math.47 (12) (1994) 1655-1688. Zbl0814.60022MR1303223
  9. [9] A.S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer, Berlin, 1998. Zbl0973.60003MR1717054
  10. [10] G.N. Watson, A Treatise on the Theory of Bessel Functions, in: Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996, reprinted. Zbl0849.33001MR1349110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.