A proof of Weinstein’s conjecture in
Annales de l'I.H.P. Analyse non linéaire (1987)
- Volume: 4, Issue: 4, page 337-356
- ISSN: 0294-1449
Access Full Article
topHow to cite
topViterbo, Claude. "A proof of Weinstein’s conjecture in $\mathbb {R}^{2n}$." Annales de l'I.H.P. Analyse non linéaire 4.4 (1987): 337-356. <http://eudml.org/doc/78135>.
@article{Viterbo1987,
author = {Viterbo, Claude},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {symplectic manifold; characteristic; existence of closed characteristics},
language = {eng},
number = {4},
pages = {337-356},
publisher = {Gauthier-Villars},
title = {A proof of Weinstein’s conjecture in $\mathbb \{R\}^\{2n\}$},
url = {http://eudml.org/doc/78135},
volume = {4},
year = {1987},
}
TY - JOUR
AU - Viterbo, Claude
TI - A proof of Weinstein’s conjecture in $\mathbb {R}^{2n}$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 4
SP - 337
EP - 356
LA - eng
KW - symplectic manifold; characteristic; existence of closed characteristics
UR - http://eudml.org/doc/78135
ER -
References
top- [B1] A. Bahri, Un problème variationnel sans compacité dans la géométrie de contact, C.R. Acad. Sc. T. 299 Série I, 1984, pp. 757-760. Zbl0565.58018MR772088
- [B2] A. Bahri, Pseudo orbites des formes de contact, preprint.
- [B-L-M-R] H. Berestycki, J.M. Lasry, G. Mancini and B. Ruf, Existence of Multiple Periodic Orbits on Starshaped Hamiltonian Surfaces, Comm. Pure and Appl. Math., Vol. 38, 1985, pp. 253-289. Zbl0569.58027MR784474
- [Bo] A. Borel, Seminar on Transformation Groups, Annals of Math. Studies, No. 46, Princeton University Press, New York, 1960. Zbl0091.37202MR116341
- [C-E] F. Clarke and I. Ekeland, Hamiltonian Trajectories Having Prescribed Minimal Period, Comm. Pure and Appl. Math., Vol. 33, 1980, pp. 103-113. Zbl0403.70016MR562546
- [E-T] I. Ekeland and R. Temam, Convex Analysis and Varational Problems, North Holland, 1976. Zbl0322.90046MR463994
- [F-R] E.R. Fadell and P.H. Rabinowitz, Generalized Cohomological Index Theories for Lie Group Action with an Application to Bifurcation Questions for Hamiltonian Systems, Invent. Math., Vol. 45, 1978, pp. 139-174. Zbl0403.57001MR478189
- [H-Z] H. Hofer and E. Zehnder, Periodic Solutions on Hypersurfaces and a Result by C. Viterbo, Invent. Math. (to appear). Zbl0631.58022MR906578
- [R] P.H. Rabinowitz, Periodic Solutions of Hamiltonian Systems, Comm. Pure and Appl. Math., Vol. 31, 1978, pp. 157-184. Zbl0358.70014MR467823
- [Se] H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z., Vol. 51, 1948, pp. 197-216. Zbl0030.22103MR25693
- [W.1] A. Weinstein, Periodic Orbits for Convex Hamiltonian Systems, Ann. of Math., Vol. 108, 1978, pp. 507-518. Zbl0403.58001MR512430
- [W.2] A. Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorem, Journal of Diff. Eq., Vol. 33, 1979, pp. 353-358. Zbl0388.58020MR543704
Citations in EuDML Documents
top- Xianling Fan, A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions
- François Laudenbach, Trois constructions en topologie symplectique
- Chun-Gen Liu, Yiming Long, Hyperbolic characteristics on star-shaped hypersurfaces
- Alfred Künzle, Singular Hamiltonian systems and symplectic capacities
- Alfred Künzle, Symplectic Capacities in Manifolds
- H. Hofer, C. Viterbo, The Weinstein conjecture in cotangent bundles and related results
- Claude Viterbo, Capacités symplectiques et applications
- François Laudenbach, Orbites périodiques et courbes pseudo-holomorphes. Application à la conjecture de Weinstein en dimension 3
- Claude Viterbo, An introduction to symplectic topology
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.