- Théorie des ensembles
Annales scientifiques de l'Université de Clermont. Mathématiques (1982)
- Volume: 73, Issue: 21, page 15-45
- ISSN: 0249-7042
Access Full Article
topHow to cite
topPabion, J.-F.. "$\Pi _2$ - Théorie des ensembles." Annales scientifiques de l'Université de Clermont. Mathématiques 73.21 (1982): 15-45. <http://eudml.org/doc/80545>.
@article{Pabion1982,
author = {Pabion, J.-F.},
journal = {Annales scientifiques de l'Université de Clermont. Mathématiques},
keywords = {fragments of set theory; axiomatization; reflection principle; minimal models; analysis in ZFC; ordinal definability},
language = {fre},
number = {21},
pages = {15-45},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {$\Pi _2$ - Théorie des ensembles},
url = {http://eudml.org/doc/80545},
volume = {73},
year = {1982},
}
TY - JOUR
AU - Pabion, J.-F.
TI - $\Pi _2$ - Théorie des ensembles
JO - Annales scientifiques de l'Université de Clermont. Mathématiques
PY - 1982
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 73
IS - 21
SP - 15
EP - 45
LA - fre
KW - fragments of set theory; axiomatization; reflection principle; minimal models; analysis in ZFC; ordinal definability
UR - http://eudml.org/doc/80545
ER -
References
top- [1] J. Barwise (1975) - Admissible sets and structures -Springer -Berlin. Zbl0316.02047MR424560
- [2] R. Dalin (1979) - Une théorie locale des ensembles: Π2- ZF - Forcing dans cette théorie- Thèse de 3e Cycle - LYON.
- [3] Drake (1974)- Set theory: an introduction to large cardinals- North-Holland- Pub. Zbl0294.02034
- [4] H. Gaifmann (1972)-A note on models and submodels of arithmetic- Conf. in Math. Logic - London1970 - Lectures Notes in Math. - Vol. 255 - Springer Berlin - pp. 128-144. Zbl0255.02058MR419215
- [5] M. Guillaume (1977) - Some remarks in set theory - Math. Logic - Proceedings of the 1st Brazilian conference- Dekker Inc. - New-York. Zbl0398.03041MR510979
- [6] D.G. Goldrei, A. Mac Intyre and H. Simmons (1973) - The forcing companions of number theories - Isr. J. Math. - Vol.14 - pp. 317-337. Zbl0301.02054MR327511
- [7] J. Hirschfeld (1975) - Forcing - Arithmetic and Division Rings - Lectures Notes in Math. Vol. 454 - Springer Berlin. Zbl0304.02024MR505452
- [8] J. Myhill and D. Scott (1971) - Ordinal definability-Axiomatic set theory- Proceedings of symp. in pure Math. - Providence - pp. 271-278. Zbl0226.02048MR281603
- [ 9] J.F. Pabion (1978) - V = HC ? Non publié.
- [ 10] M.O. Rabin (1962) - Diophantine equations and non-standard models of arithmetics- Proceedings of the 1960 Int. Cong. in Logic. Math. and Ph. Sc. - Stanford University Press - pp. 151-158. Zbl0149.24603MR153577
- [11] M.O. Rabin (1961)- Non-standard models and the independance of induction axiom-Essays on the found. of Math. - The Magness Press - Jerusalem - pp. 287-299. Zbl0143.01001MR161795
- [12] R. Shoenfield (1967) - Mathematical Logic - Addison Wesley. Zbl0155.01102MR225631
- [ 13] A. Wilkie (1973) - On models of arithmetic- J.S.L. - Vol. 40 - pp. 41-47. Zbl0319.02050MR429547
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.