Π 2 - Théorie des ensembles

J.-F. Pabion

Annales scientifiques de l'Université de Clermont. Mathématiques (1982)

  • Volume: 73, Issue: 21, page 15-45
  • ISSN: 0249-7042

How to cite

top

Pabion, J.-F.. "$\Pi _2$ - Théorie des ensembles." Annales scientifiques de l'Université de Clermont. Mathématiques 73.21 (1982): 15-45. <http://eudml.org/doc/80545>.

@article{Pabion1982,
author = {Pabion, J.-F.},
journal = {Annales scientifiques de l'Université de Clermont. Mathématiques},
keywords = {fragments of set theory; axiomatization; reflection principle; minimal models; analysis in ZFC; ordinal definability},
language = {fre},
number = {21},
pages = {15-45},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {$\Pi _2$ - Théorie des ensembles},
url = {http://eudml.org/doc/80545},
volume = {73},
year = {1982},
}

TY - JOUR
AU - Pabion, J.-F.
TI - $\Pi _2$ - Théorie des ensembles
JO - Annales scientifiques de l'Université de Clermont. Mathématiques
PY - 1982
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 73
IS - 21
SP - 15
EP - 45
LA - fre
KW - fragments of set theory; axiomatization; reflection principle; minimal models; analysis in ZFC; ordinal definability
UR - http://eudml.org/doc/80545
ER -

References

top
  1. [1] J. Barwise (1975) - Admissible sets and structures -Springer -Berlin. Zbl0316.02047MR424560
  2. [2] R. Dalin (1979) - Une théorie locale des ensembles: Π2- ZF - Forcing dans cette théorie- Thèse de 3e Cycle - LYON. 
  3. [3] Drake (1974)- Set theory: an introduction to large cardinals- North-Holland- Pub. Zbl0294.02034
  4. [4] H. Gaifmann (1972)-A note on models and submodels of arithmetic- Conf. in Math. Logic - London1970 - Lectures Notes in Math. - Vol. 255 - Springer Berlin - pp. 128-144. Zbl0255.02058MR419215
  5. [5] M. Guillaume (1977) - Some remarks in set theory - Math. Logic - Proceedings of the 1st Brazilian conference- Dekker Inc. - New-York. Zbl0398.03041MR510979
  6. [6] D.G. Goldrei, A. Mac Intyre and H. Simmons (1973) - The forcing companions of number theories - Isr. J. Math. - Vol.14 - pp. 317-337. Zbl0301.02054MR327511
  7. [7] J. Hirschfeld (1975) - Forcing - Arithmetic and Division Rings - Lectures Notes in Math. Vol. 454 - Springer Berlin. Zbl0304.02024MR505452
  8. [8] J. Myhill and D. Scott (1971) - Ordinal definability-Axiomatic set theory- Proceedings of symp. in pure Math. - Providence - pp. 271-278. Zbl0226.02048MR281603
  9. [ 9] J.F. Pabion (1978) - V = HC ? Non publié. 
  10. [ 10] M.O. Rabin (1962) - Diophantine equations and non-standard models of arithmetics- Proceedings of the 1960 Int. Cong. in Logic. Math. and Ph. Sc. - Stanford University Press - pp. 151-158. Zbl0149.24603MR153577
  11. [11] M.O. Rabin (1961)- Non-standard models and the independance of induction axiom-Essays on the found. of Math. - The Magness Press - Jerusalem - pp. 287-299. Zbl0143.01001MR161795
  12. [12] R. Shoenfield (1967) - Mathematical Logic - Addison Wesley. Zbl0155.01102MR225631
  13. [ 13] A. Wilkie (1973) - On models of arithmetic- J.S.L. - Vol. 40 - pp. 41-47. Zbl0319.02050MR429547

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.