Crystalline conjecture via -theory
Annales scientifiques de l'École Normale Supérieure (1998)
- Volume: 31, Issue: 5, page 659-681
- ISSN: 0012-9593
Access Full Article
topHow to cite
topNizioł, Wiesława. "Crystalline conjecture via $K$-theory." Annales scientifiques de l'École Normale Supérieure 31.5 (1998): 659-681. <http://eudml.org/doc/82474>.
@article{Nizioł1998,
author = {Nizioł, Wiesława},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {étale cohomology; crystalline cohomology; algebraic -theory; Thomason's comparison theorem; syntomic Chern classes; rational crystalline conjecture},
language = {eng},
number = {5},
pages = {659-681},
publisher = {Elsevier},
title = {Crystalline conjecture via $K$-theory},
url = {http://eudml.org/doc/82474},
volume = {31},
year = {1998},
}
TY - JOUR
AU - Nizioł, Wiesława
TI - Crystalline conjecture via $K$-theory
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 5
SP - 659
EP - 681
LA - eng
KW - étale cohomology; crystalline cohomology; algebraic -theory; Thomason's comparison theorem; syntomic Chern classes; rational crystalline conjecture
UR - http://eudml.org/doc/82474
ER -
References
top- [1] P. BERTHELOT, L. BREEN and W. MESSING, Théorie de Dieudonné cristalline. II, Lect. Notes in Math., vol. 930, Springer-Verlag, Berlin-New York, 1982. Zbl0516.14015MR85k:14023
- [2] P. BERTHELOT, A. GROTHENDIECK and L. ILLUSIE, Théorie des intersections et théorème de Riemann-Roch, Lect. Notes in Math., vol. 225, Springer-Verlag, Berlin, Heidelberg and New York, 1971. Zbl0218.14001MR50 #7133
- [3] P. BERTHELOT and A. OGUS, F-isocrystals and de Rham cohomology. I, Inv. Math. 72, 1983, pp. 159-199. Zbl0516.14017MR85e:14025
- [4] W. DWYER and E. FRIEDLANDER, Algebraic and étale K-theory, Trans. Amer. Math. Soc. 292, 1985, no. 1, pp. 247-280. Zbl0581.14012MR87h:18013
- [5] G. FALTINGS, Crystalline cohomology and p-adic Galois representations, Algebraic analysis, geometry and number theory (J. I. Igusa ed.), Johns Hopkins University Press, Baltimore, 1989, pp. 25-80. Zbl0805.14008MR98k:14025
- [6] G. FALTINGS, p-adic Hodge-theory, J. of the AMS 1, 1988, pp. 255-299. Zbl0764.14012MR89g:14008
- [7] J.-M. FONTAINE, Cohomologie de de Rham, cohomologie crystalline et représentations p-adiques, Algebraic Geometry Tokyo-Kyoto, Lect. Notes Math., vol. 1016, Springer-Verlag, Berlin, Heidelberg and New York, 1983, pp. 86-108. Zbl0596.14015MR85f:14019
- [8] J.-M. FONTAINE, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local, construction d'un anneau de Barsotti-Tate, Ann. of Math. 115, 1982, pp. 529-577. Zbl0544.14016MR84d:14010
- [9] J.-M. FONTAINE, Le corps des périodes p-adiques, Astérisque, vol. 223, 1994, pp. 321-347. Zbl0873.14020
- [10] J.-M. FONTAINE and G. LAFAILLE, Construction de représentations p-adiques, Ann. Sci. Ec. Norm. Sup., IV. Ser., 15, 1982, pp. 547-608. Zbl0579.14037MR85c:14028
- [11] J.-M. FONTAINE and W. MESSING, p-adic periods and p-adic étale cohomology, Current Trends in Arithmetical Algebraic Geometry (K. Ribet, ed.), Contemporary Math., vol. 67, Amer. Math. Soc., Providence, 1987, pp. 179-207. Zbl0632.14016MR89g:14009
- [12] E. FRIEDLANDER, Étale K-theory. II. Connections with algebraic K-theory, Ann. Sci. École Norm. Sup., IV. Ser., 15, 1982, pp. 231-256. Zbl0537.14011MR85c:14014
- [13] H. GILLET, Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40, 1981, pp. 203-289. Zbl0478.14010MR83m:14013
- [14] H. GILLET and W. MESSING, Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J., 55, 1987, pp. 501-538. Zbl0651.14014MR89c:14025
- [15] M. GROS, Régulateurs syntomiques et valeurs de fonctions L p-adiques I, Invent. Math., 99, 1990, pp. 293-320. Zbl0667.14006MR91e:11070
- [16] M. GROS, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmic, Mém. Soc. Math. France (N.S.) 21, 1985. Zbl0615.14011
- [17] K. KATO, On p-adic vanishing cycles (application of ideas of Fontaine-Messing), Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam-New York, 1987, pp. 207-251. Zbl0645.14009
- [18] K. KATO and W. MESSING, Syntomic cohomology and p-adic étale cohomology, Tôhoku Math. J. 44, 1992, pp. 1-9. Zbl0792.14008MR93b:14035
- [19] D. QUILLEN, Higher algebraic K-theory I, Algebraic K-theory I, Lecture Notes in Math. 341, Springer-Verlag, Berlin-Heidelberg-New-York, 1973, pp. 85-147. Zbl0292.18004MR49 #2895
- [20] V. V. SHEKHTMAN, Chern classes in algebraic K-theory, Trans. Moscow Math. Soc., Issue I, 1984, pp. 243-271. Zbl0541.18008
- [21] C. SOULÉ, Operations on étale K-theory. Applications, Algebraic K-theory I, Lect. Notes Math. 966, Springer-Verlag, Berlin, Heidelberg and New York, 1982, pp. 271-303. Zbl0507.14013MR85b:18011
- [22] C. SOULÉ, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Inv. Math. 55, 1979, pp. 251-295. Zbl0437.12008MR81i:12016
- [23] C. SOULÉ, Opérations en K-théorie algébrique, Canad. J. Math. 37, no. 3, 1985, pp. 488-550. Zbl0575.14015MR87b:18013
- [24] R. THOMASON, Algebraic K-theory and étale cohomology, Ann. Scient. Ecole Norm. Sup. 18, 1985, pp. 437-552. Zbl0596.14012MR87k:14016
- [25] R. THOMASON, Bott stability in algebraic K-theory, Applications of algebraic K-theory to algebraic geometry and number theory I, II (Boulder, Colo., 1983, Contemporary Math., vol. 55, Amer. Math. Soc., Providence, 1986, pp. 389-406. Zbl0594.18012MR87m:18022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.