On the asymptotic behavior of resolvent kernels, spectral functions and eigenvalues of semi-elliptic systems

Yakar Kannai

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1969)

  • Volume: 23, Issue: 4, page 563-634
  • ISSN: 0391-173X

How to cite

top

Kannai, Yakar. "On the asymptotic behavior of resolvent kernels, spectral functions and eigenvalues of semi-elliptic systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.4 (1969): 563-634. <http://eudml.org/doc/83509>.

@article{Kannai1969,
author = {Kannai, Yakar},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {partial differential equations},
language = {eng},
number = {4},
pages = {563-634},
publisher = {Scuola normale superiore},
title = {On the asymptotic behavior of resolvent kernels, spectral functions and eigenvalues of semi-elliptic systems},
url = {http://eudml.org/doc/83509},
volume = {23},
year = {1969},
}

TY - JOUR
AU - Kannai, Yakar
TI - On the asymptotic behavior of resolvent kernels, spectral functions and eigenvalues of semi-elliptic systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1969
PB - Scuola normale superiore
VL - 23
IS - 4
SP - 563
EP - 634
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/83509
ER -

References

top
  1. [1] Agmon, S., On the asymptotic distribution of eigenvalues of differential problems, Seminari dell'Instituto Nazionale di Alta Matematica, 1962-63. Roma: Edizioni Cremonese1964. 556-573. MR188604
  2. [2] Agmon, S., Lectures on Elliptic Boundary Value Problems. Princeton, N. J.: Van No-strand Mathematical Studies, 1965. Zbl0142.37401MR178246
  3. [3] Agmon, S., On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems. Comm. Pure Appl. Math.18, 627-663 (1965). Zbl0151.20203MR198287
  4. [4] Agmon, S., and Y. Kannai, On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators, Israel J. Math.5, 1-30 (1967). Zbl0148.13003MR218730
  5. [5] Agmon, S., Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators, Arch. Rational Mech. Anal.28, 165-183 (1968). Zbl0159.15903MR228851
  6. [6] Avakumovic V.G., Uber die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z.65, 327-344 (1956). Zbl0070.32601MR80862
  7. [7] Barozzi, G.C., Sul multi-indice degli operatori quasi-ellittici, Boll. Un. Mat. Ital. (3) 19, 289-299 (1964). Zbl0141.28601MR170106
  8. [8] Bergendal, G., Convergence and summability of eigenfunction expansion connected with elliptic differential operators, Med. Lunds. Univ. Math. Sem.15, 1-63 (1959). Zbl0093.06901MR105548
  9. [9] Browder, F.E., The asymptotic distribution of eigenfunction and eigenvalues for semi-elliptic differential operators, Proc. Nat. Acad. Sci. U. S. A.43, 270-273 (1957). Zbl0077.30002MR90741
  10. [10] Browder, F.E., Asymptotic distribution of eigenvalues and eigenfunctions for non-local elliptic boundary value problems I, Amer. J. Math.87, 175-195 (1965). Zbl0143.14403MR174858
  11. [11] Carleman, T., Proprietes asymptotiques des functions fondamentales des membranes vibrantes, C. R. du 8 ème Congrès des Math. Scand. Stockholm1934 (Lund1935), 34-44. Zbl0012.07001JFM61.0526.04
  12. [12] Cavallucci, A., Sulle proprietà differenziali delle soluzioni delle equazioni quasi-ellittiche relativamente a domini normali, Boll. Un. Mat. Ital. (3) 19, 465-477 (1964). Zbl0147.09301MR178243
  13. [13] Ehrling, G., On a type of eigenvalue problems for certain elliptic differential operators, Math. Scand.2, 267-285 (1954). Zbl0056.32304MR67311
  14. [14] Garding, L., The asymptotic distribution of the eigenvalues and eigenfunctions of a general vibration problem, Kangl. Fysiogr. Sällsk. i Lund Förh. 21, Nr. 11 (1951). This paper appeared also in Med. Lunds. Univ. Mat. Sem. Tome Supplementaire, 19-118 (1952). Zbl0045.39401MR52660
  15. [15] G L., On the asymptotic distribution of the eigenvalues and eigenfunctions of elliptic differential operators, Math. Scand.1, 237-255 (1953). Zbl0053.39102MR64980
  16. [16] G, L., On the asymptotic properties of the spectral function belonging to a self-adjoint semi-bounded extension of an elliptic differential operator, Kungl. Fysiogr. Sällsk. i Lund Förh, 24, 1-18 (1954). Zbl0058.08802MR71626
  17. [17] Giusti, E., Equazioni quasi-ellittiche e spazi Lp,θ (Ω, δ), (I), Ann. Mat Pura Appl. (4) 74, 313-354 (1967); (II), Ann. Scuola Norm. Sup. Pisa21, 353-372 (1967). 
  18. [18] Hörmander, L.Linear Partial Differential Operators, Springer Verlag (1963). Zbl0108.09301MR404822
  19. [19] Hörmander, L., On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators. To appear, MR257589
  20. [20] Kohn, J.J., and L. Niremberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math.20, 797-872 (1967). Zbl0153.14503MR234118
  21. [21] Malliavin, P., Un théorém taubérien avee reste pour la transformée de Stieltjes, C. R. Acad. Sci Paris255, 2351-2352 (1962). Zbl0109.33401MR144114
  22. [22] Nilsson, N., Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Arkiv för Mat.5, 527-540 (1965). Zbl0144.36302MR218931
  23. [23] Peetre, J., On estimating the solutions of hypoelliptic differential equations near the plane boundary, Math. Scand.9, 337-251 (1961). Zbl0113.30601MR146517
  24. [24] Pleijel, A., On a theorem by P. Malliavin, Ierael J. Math.1, 166-168 (1963). Zbl0126.11503MR167751
  25. [25] Schechter, M., System of partial differential equations in a half-space, Comm. Pure Appl. Math.17 (1964), 428-484. Zbl0125.06001MR168925
  26. [26] Volevich, L.R., Local properties of solution. of quasi-elliptic systems (Russian), Mat. Sb. (N. S.)59 (101) supplement. 3-52 (1962). Zbl0161.07801MR150448
  27. [27] Beals, R., Asymptotic behavior of the Green's function and spectral function of an elliptic operator, to appear. Zbl0195.11401
  28. [28] Ramazanov, M.D., A priori estimates of solutions to Dirichlet problem for certain hypoelliptic equation, (Russian), Dokl. Akad. Nank. SSSR179, 783-785 (1968). Zbl0167.09602MR228831
  29. [29] Hörmarder, Thespectral function of an elliptic operator, Acta Math.121 (1968), 198-218. Zbl0164.13201MR609014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.