Reducibilities on tally and sparse sets

Shouwen Tang; Ronald V. Book

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1991)

  • Volume: 25, Issue: 3, page 293-302
  • ISSN: 0988-3754

How to cite

top

Tang, Shouwen, and Book, Ronald V.. "Reducibilities on tally and sparse sets." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 25.3 (1991): 293-302. <http://eudml.org/doc/92394>.

@article{Tang1991,
author = {Tang, Shouwen, Book, Ronald V.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {sparse sets; complexity classes; tally sets; polynomial-type computable reducibilities},
language = {eng},
number = {3},
pages = {293-302},
publisher = {EDP-Sciences},
title = {Reducibilities on tally and sparse sets},
url = {http://eudml.org/doc/92394},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Tang, Shouwen
AU - Book, Ronald V.
TI - Reducibilities on tally and sparse sets
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 3
SP - 293
EP - 302
LA - eng
KW - sparse sets; complexity classes; tally sets; polynomial-type computable reducibilities
UR - http://eudml.org/doc/92394
ER -

References

top
  1. 1. E. ALLENDER and R. RUBINSTEIN, P-printable sets, S.I.A.M. J. Comput., 1988, 17, pp. 1193-1202. Zbl0682.68039MR972668
  2. 2. E. ALLENDER and O. WATANABE, Kolmogorov complexity and degrees of tally sets, Inform. and Comput., 1990, 86, pp. 160-178. Zbl0704.03023MR1054537
  3. 3. T. BAKER, J. GILL and R. SOLOWAY, Relativizations of the P = ? NP question, S.I.A.M. J. Comput., 1975, 4, pp. 431-442. Zbl0323.68033MR395311
  4. 4. J. BALCÁZAR and R. BOOK, Sets with small generalized Kolmogorov complexity, Acta Inform., 1986, 23, pp. 679-688. Zbl0616.68046MR865501
  5. 5. J. BALCÁZAR, J. DÍAZ and J. GABARRÓ, Structural Complexity, I and II, Springer-Verlag, 1988, and 1990. Zbl0638.68040MR1047862
  6. 6. R. BOOK and K. KO, On sets truth-table reducible to sparse sets, S.I.A.M. J. Comput., 1988, 77, pp. 903-919. Zbl0665.68040MR961047
  7. 7. J. HARTMANIS, N. IMMERMAN and V. SEWELSON, Sparse sets in NP-P: EXPTIME versus NEXPTIME, Proc. 15th A.C.M. Symp. Theory of Computing, 1983, pp. 382-391. Zbl0586.68042
  8. 8. K. KO, Continuous optimization problems and a polynomial hierarchy of real functions, J. Complexity, 1985, 1, pp. 210-231. Zbl0609.03015MR925429
  9. 9. K. KO, Distinguishing bounded reducibilities by sparse sets, Inform. and Comput., 1989, 81, pp. 62-87. Zbl0681.68066MR992304
  10. 10. R. LANDER, N. LYNCH and A. SELMAN, A comparison of polynomial-time reducibilities, Theoret. Comput. Sci., 1975, 1, pp. 103-123. Zbl0321.68039MR395319
  11. 11. T. LONG, Strong nondeterministic polynomial-time reducibilites, Theoret. Comput. Sci., 1982, 21, pp. 1-25. Zbl0521.03028MR672099
  12. 12. T. LONG, On restricting the size of oracles compared with restricting access to oracles, S.I.A.M. J. Comput., 1985, 14, pp. 585-597. Zbl0583.68025MR795932
  13. 13. U. SCHÖNING, Complexity and Structure, L.N.C.S., No. 211, 1986, Springer-Verlag Publ. Co. Zbl0589.03022MR827009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.