A note on free pro--extensions of algebraic number fields
Journal de théorie des nombres de Bordeaux (1993)
- Volume: 5, Issue: 1, page 165-178
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topYamagishi, Masakazu. "A note on free pro-$p$-extensions of algebraic number fields." Journal de théorie des nombres de Bordeaux 5.1 (1993): 165-178. <http://eudml.org/doc/93570>.
@article{Yamagishi1993,
abstract = {For an algebraic number field $k$ and a prime $p$, define the number $\rho $ to be the maximal number $d$ such that there exists a Galois extension of $k$ whose Galois group is a free pro-$p$-group of rank $d$. The Leopoldt conjecture implies $1 \le \rho \le r_2 + 1 $, ($r_2$ denotes the number of complex places of $k$). Some examples of $k$ and $p$ with $\rho = r_2 + 1$ have been known so far. In this note, the invariant $\rho $ is studied, and among other things some examples with $\rho < r_2 + 1$ are given.},
author = {Yamagishi, Masakazu},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {algebraic number field; $\mathbb \{Z\}_p$-extension; free pro-$p$-group; weak Leopoldt conjecture; maximal rank; free pro- Galois groups},
language = {eng},
number = {1},
pages = {165-178},
publisher = {Université Bordeaux I},
title = {A note on free pro-$p$-extensions of algebraic number fields},
url = {http://eudml.org/doc/93570},
volume = {5},
year = {1993},
}
TY - JOUR
AU - Yamagishi, Masakazu
TI - A note on free pro-$p$-extensions of algebraic number fields
JO - Journal de théorie des nombres de Bordeaux
PY - 1993
PB - Université Bordeaux I
VL - 5
IS - 1
SP - 165
EP - 178
AB - For an algebraic number field $k$ and a prime $p$, define the number $\rho $ to be the maximal number $d$ such that there exists a Galois extension of $k$ whose Galois group is a free pro-$p$-group of rank $d$. The Leopoldt conjecture implies $1 \le \rho \le r_2 + 1 $, ($r_2$ denotes the number of complex places of $k$). Some examples of $k$ and $p$ with $\rho = r_2 + 1$ have been known so far. In this note, the invariant $\rho $ is studied, and among other things some examples with $\rho < r_2 + 1$ are given.
LA - eng
KW - algebraic number field; $\mathbb {Z}_p$-extension; free pro-$p$-group; weak Leopoldt conjecture; maximal rank; free pro- Galois groups
UR - http://eudml.org/doc/93570
ER -
References
top- [1] V.A. Babaicev, On some questions in the theory of Γ-extensions of algebraic number fields, Izv. Akad. Nauk. SSSR. Ser. Mat.40 (1976), 477-487; English transl. in Math. USSR-Izv.10 (1976), 453-462. Zbl0366.12005
- [2] G. Gras et J.-F. Jaulent, Sur les corps de nombres réguliers, Math. Z.202 (1989), 343-365. Zbl0704.11040MR1017575
- [3] R. Greenberg, On the structure of certain Galois groups, Invent. Math.47 (1978), 85-99. Zbl0403.12004MR504453
- [4] K. Iwasawa, On Zl-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326. Zbl0285.12008MR349627
- [5] J.-F. Jaulent et T. Nguyen Quang Do, Corps p-rationnels, corps p-réguliers, et ramification restreinte, Séminaire de Théorie des Nombres de Bordeaux, (1987-1988), Exposé 10, 10-01-10-26. Zbl0748.11052
- [6] L V.Kuz'min, Local extensions associated with l-extensions with given ramification, Izv. Akad. Nauk. SSSR. Ser. Mat.39 (1975), 739-772; English transl. in Math. USSR-Izv.9 (1975), 693-726. Zbl0342.12007MR392925
- [7] J. Labute, Classification of Demushkin groups, Canad. J. Math.19 (1967), 106-132. Zbl0153.04202MR210788
- [8] A. Movahhedi, Sur les p-extensions des corps p-rationnels, Math. Nachr.149 (1990), 163-176. Zbl0723.11054MR1124802
- [9] A. Movahhedi et T. Nguyen Quang Do, Sur l'arithmétique des corps de nombres p-rationnels, Séminaire de Théorie des Nombres, Paris1987-88, Progr. Math., 81, BirkhäuserBoston, MA,1990, 155-200. Zbl0703.11059MR1042770
- [10] J. Neukirch, Freie Produkte pro-endlicher Gruppen und ihre Kohomologie, Archiv der Math.22 (1971), 337-357. Zbl0254.20023MR347992
- [11] T. Nguyen Quang Do, Sur la structure galoisienne des corps locaux et la théorie d'Iwasawa, Compositio Math.46 (1982), 85-119. Zbl0481.12004MR660155
- [12] T. Nguyen Quang Do, Formations de classes et modules d'Iwasawa, Number Theory Noordwijkerhout1983, Lecture Notes in Math.1068 (1984), 167-185. Zbl0543.12007MR756093
- [13] T. Nguyen Quang Do, Sur la torsion de certains modules galoisiens II, Séminaire de Théorie des Nombres, Paris1986-87, Progr. Math., 75, BirkhäuserBoston, MA, 1988, 271-297. Zbl0687.12005MR990514
- [14] I.R. Šafarevic, Extensions with given points of ramification, Inst. Hautes Études Sci. Publ. Math.18 (1964), 295-319; English transl. in Amer. Math. Soc. Transl. Ser. 259 (1966), 128-149; see also Collected Mathematical Papers, 295-316.
- [15] J.P. Serre, Cohomologie galoisienne, Lecture Notes in Math.5 (1964). Zbl0812.12002MR201444
- [16] J. Sonn, Epimorphisms of Demushkin groups, Israel J. Math.17 (1974), 176-190. Zbl0286.12010MR349636
- [17] V.M. Tsvetkov, Examples of extensions with Demushkin group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 103 (1980), 146-149; English transl. in J. Soviet Math.24-4 (1984), 480-482. Zbl0472.12008MR618509
- [18] K. Wingberg, Freie Produktzerlegungen von Galoisgruppen und Iwasawa-Invarianten für p-Erweiterungen von Q, J. Reine Angew. Math.341 (1983), 111-129. Zbl0501.12014MR697311
- [19] K. Wingberg, Duality theorems for Γ-extensions of algebraic number fields, Compositio Math.55 (1985), 333-381. Zbl0608.12012
- [20] K. Wingberg, On Galois groups of p-closed algebraic number fields with restricted ramification, J. Reine Angew. Math.400 (1989), 185-202. Zbl0715.11065MR1013730
- [21] K. Wingberg, On Galois groups of p-closed algebraic number fields with restricted ramification II, J. Reine Angew. Math.416 (1991), 187-194. Zbl0728.11058MR1099949
- [22] M. Yamagishi, On the center of Galois groups of maximal pro-p extensions of algebraic number fields with restricted ramification, J. Reine Angew. Math.436 (1993), 197-208. Zbl0766.11044MR1207286
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.