A note on free pro- p -extensions of algebraic number fields

Masakazu Yamagishi

Journal de théorie des nombres de Bordeaux (1993)

  • Volume: 5, Issue: 1, page 165-178
  • ISSN: 1246-7405

Abstract

top
For an algebraic number field k and a prime p , define the number ρ to be the maximal number d such that there exists a Galois extension of k whose Galois group is a free pro- p -group of rank d . The Leopoldt conjecture implies 1 ρ r 2 + 1 , ( r 2 denotes the number of complex places of k ). Some examples of k and p with ρ = r 2 + 1 have been known so far. In this note, the invariant ρ is studied, and among other things some examples with ρ < r 2 + 1 are given.

How to cite

top

Yamagishi, Masakazu. "A note on free pro-$p$-extensions of algebraic number fields." Journal de théorie des nombres de Bordeaux 5.1 (1993): 165-178. <http://eudml.org/doc/93570>.

@article{Yamagishi1993,
abstract = {For an algebraic number field $k$ and a prime $p$, define the number $\rho $ to be the maximal number $d$ such that there exists a Galois extension of $k$ whose Galois group is a free pro-$p$-group of rank $d$. The Leopoldt conjecture implies $1 \le \rho \le r_2 + 1 $, ($r_2$ denotes the number of complex places of $k$). Some examples of $k$ and $p$ with $\rho = r_2 + 1$ have been known so far. In this note, the invariant $\rho $ is studied, and among other things some examples with $\rho &lt; r_2 + 1$ are given.},
author = {Yamagishi, Masakazu},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {algebraic number field; $\mathbb \{Z\}_p$-extension; free pro-$p$-group; weak Leopoldt conjecture; maximal rank; free pro- Galois groups},
language = {eng},
number = {1},
pages = {165-178},
publisher = {Université Bordeaux I},
title = {A note on free pro-$p$-extensions of algebraic number fields},
url = {http://eudml.org/doc/93570},
volume = {5},
year = {1993},
}

TY - JOUR
AU - Yamagishi, Masakazu
TI - A note on free pro-$p$-extensions of algebraic number fields
JO - Journal de théorie des nombres de Bordeaux
PY - 1993
PB - Université Bordeaux I
VL - 5
IS - 1
SP - 165
EP - 178
AB - For an algebraic number field $k$ and a prime $p$, define the number $\rho $ to be the maximal number $d$ such that there exists a Galois extension of $k$ whose Galois group is a free pro-$p$-group of rank $d$. The Leopoldt conjecture implies $1 \le \rho \le r_2 + 1 $, ($r_2$ denotes the number of complex places of $k$). Some examples of $k$ and $p$ with $\rho = r_2 + 1$ have been known so far. In this note, the invariant $\rho $ is studied, and among other things some examples with $\rho &lt; r_2 + 1$ are given.
LA - eng
KW - algebraic number field; $\mathbb {Z}_p$-extension; free pro-$p$-group; weak Leopoldt conjecture; maximal rank; free pro- Galois groups
UR - http://eudml.org/doc/93570
ER -

References

top
  1. [1] V.A. Babaicev, On some questions in the theory of Γ-extensions of algebraic number fields, Izv. Akad. Nauk. SSSR. Ser. Mat.40 (1976), 477-487; English transl. in Math. USSR-Izv.10 (1976), 453-462. Zbl0366.12005
  2. [2] G. Gras et J.-F. Jaulent, Sur les corps de nombres réguliers, Math. Z.202 (1989), 343-365. Zbl0704.11040MR1017575
  3. [3] R. Greenberg, On the structure of certain Galois groups, Invent. Math.47 (1978), 85-99. Zbl0403.12004MR504453
  4. [4] K. Iwasawa, On Zl-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326. Zbl0285.12008MR349627
  5. [5] J.-F. Jaulent et T. Nguyen Quang Do, Corps p-rationnels, corps p-réguliers, et ramification restreinte, Séminaire de Théorie des Nombres de Bordeaux, (1987-1988), Exposé 10, 10-01-10-26. Zbl0748.11052
  6. [6] L V.Kuz'min, Local extensions associated with l-extensions with given ramification, Izv. Akad. Nauk. SSSR. Ser. Mat.39 (1975), 739-772; English transl. in Math. USSR-Izv.9 (1975), 693-726. Zbl0342.12007MR392925
  7. [7] J. Labute, Classification of Demushkin groups, Canad. J. Math.19 (1967), 106-132. Zbl0153.04202MR210788
  8. [8] A. Movahhedi, Sur les p-extensions des corps p-rationnels, Math. Nachr.149 (1990), 163-176. Zbl0723.11054MR1124802
  9. [9] A. Movahhedi et T. Nguyen Quang Do, Sur l'arithmétique des corps de nombres p-rationnels, Séminaire de Théorie des Nombres, Paris1987-88, Progr. Math., 81, BirkhäuserBoston, MA,1990, 155-200. Zbl0703.11059MR1042770
  10. [10] J. Neukirch, Freie Produkte pro-endlicher Gruppen und ihre Kohomologie, Archiv der Math.22 (1971), 337-357. Zbl0254.20023MR347992
  11. [11] T. Nguyen Quang Do, Sur la structure galoisienne des corps locaux et la théorie d'Iwasawa, Compositio Math.46 (1982), 85-119. Zbl0481.12004MR660155
  12. [12] T. Nguyen Quang Do, Formations de classes et modules d'Iwasawa, Number Theory Noordwijkerhout1983, Lecture Notes in Math.1068 (1984), 167-185. Zbl0543.12007MR756093
  13. [13] T. Nguyen Quang Do, Sur la torsion de certains modules galoisiens II, Séminaire de Théorie des Nombres, Paris1986-87, Progr. Math., 75, BirkhäuserBoston, MA, 1988, 271-297. Zbl0687.12005MR990514
  14. [14] I.R. Šafarevic, Extensions with given points of ramification, Inst. Hautes Études Sci. Publ. Math.18 (1964), 295-319; English transl. in Amer. Math. Soc. Transl. Ser. 259 (1966), 128-149; see also Collected Mathematical Papers, 295-316. 
  15. [15] J.P. Serre, Cohomologie galoisienne, Lecture Notes in Math.5 (1964). Zbl0812.12002MR201444
  16. [16] J. Sonn, Epimorphisms of Demushkin groups, Israel J. Math.17 (1974), 176-190. Zbl0286.12010MR349636
  17. [17] V.M. Tsvetkov, Examples of extensions with Demushkin group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 103 (1980), 146-149; English transl. in J. Soviet Math.24-4 (1984), 480-482. Zbl0472.12008MR618509
  18. [18] K. Wingberg, Freie Produktzerlegungen von Galoisgruppen und Iwasawa-Invarianten für p-Erweiterungen von Q, J. Reine Angew. Math.341 (1983), 111-129. Zbl0501.12014MR697311
  19. [19] K. Wingberg, Duality theorems for Γ-extensions of algebraic number fields, Compositio Math.55 (1985), 333-381. Zbl0608.12012
  20. [20] K. Wingberg, On Galois groups of p-closed algebraic number fields with restricted ramification, J. Reine Angew. Math.400 (1989), 185-202. Zbl0715.11065MR1013730
  21. [21] K. Wingberg, On Galois groups of p-closed algebraic number fields with restricted ramification II, J. Reine Angew. Math.416 (1991), 187-194. Zbl0728.11058MR1099949
  22. [22] M. Yamagishi, On the center of Galois groups of maximal pro-p extensions of algebraic number fields with restricted ramification, J. Reine Angew. Math.436 (1993), 197-208. Zbl0766.11044MR1207286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.