In this paper, we introduce and study the class of almost weak Dunford-Pettis operators. As consequences, we derive the following interesting results: the domination property of this class of operators and characterizations of the wDP property. Next, we characterize pairs of Banach lattices for which each positive almost weak Dunford-Pettis operator is almost Dunford-Pettis.
The present paper is devoted to some applications of the notion of L-Dunford-Pettis sets to several classes of operators on Banach lattices. More precisely, we establish some characterizations of weak Dunford-Pettis, Dunford-Pettis completely continuous, and weak almost Dunford-Pettis operators. Next, we study the relationships between L-Dunford-Pettis, and Dunford-Pettis (relatively compact) sets in topological dual Banach spaces.
We introduce and study the disjoint weak -convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak -convergent operators. Next, we examine the relationship between disjoint weak -convergent operators and disjoint -convergent operators. Finally, we characterize order bounded disjoint weak -convergent operators in terms...
In this paper, we give some necessary and sufficient conditions such that each positive operator between two Banach lattices is weak almost Dunford-Pettis, and we derive some interesting results about the weak Dunford-Pettis property in Banach lattices.
Download Results (CSV)