Weak* sequential compactness and bornological limit derivatives.
The Hahn–Banach theorem implies that if is a one dimensional subspace of a t.v.s. , and is a circled convex body in , there is a continuous linear projection onto with . We determine the sets which have the property of being invariant under projections onto lines through subject to a weak boundedness type requirement.
The Blaschke–Kakutani result characterizes inner product spaces , among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace there is a norm 1 linear projection onto . In this paper, we determine which closed neighborhoods of zero in a real locally convex space of dimension at least 3 have the property that for every 2 dimensional subspace there is a continuous linear projection onto with .
Page 1