Displaying similar documents to “Shape optimization of elasto-plastic axisymmetric bodies”

Shape optimization of elastoplastic bodies obeying Hencky's law

Ivan Hlaváček (1986)

Aplikace matematiky

Similarity:

A minimization of a cost functional with respect to a part of the boundary, where the body is fixed, is considered. The criterion is defined by an integral of a yield function. The principle of Haar-Kármán and piecewise constant stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.

Shape optimization in contact problems based on penalization of the state inequality

Jaroslav Haslinger, Pekka Neittaanmäki, Timo Tiihonen (1986)

Aplikace matematiky

Similarity:

The paper deals with the approximation of optimal shape of elastic bodies, unilaterally supported by a rigid, frictionless foundation. Original state inequality, describing the behaviour of such a body is replaced by a family of penalized state problems. The relation between optimal shapes for the original state inequality and those for penalized state equations is established.

Shape optimization of an elasto-perfectly plastic body

Ivan Hlaváček (1987)

Aplikace matematiky

Similarity:

Within the range of Prandtl-Reuss model of elasto-plasticity the following optimal design problem is solved. Given body forces and surface tractions, a part of the boundary, where the (two-dimensional) body is fixed, is to be found, so as to minimize an integral of the squared yield function. The state problem is formulated in terms of stresses by means of a time-dependent variational inequality. For approximate solutions piecewise linear approximations of the unknown boundary, piecewise...

Shape optimization of materially non-linear bodies in contact

Jaroslav Haslinger, Raino Mäkinen (1997)

Applications of Mathematics

Similarity:

Optimal shape design problem for a deformable body in contact with a rigid foundation is studied. The body is made from material obeying a nonlinear Hooke’s law. We study the existence of an optimal shape as well as its approximation with the finite element method. Practical realization with nonlinear programming is discussed. A numerical example is included.