Displaying similar documents to “Sur une propriété des ensembles clairsemés”

Une démonstration du théorème sur la structure des ensembles de points

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le théorème suivant: Tout ensemble de points P (situé dans l'espace euclidien à m dimensions) se décompose en une somme de deux ensembles P=C+D dont l'ensemble C (s'il n'est pas vide) est clairsemé et effectivement énumérable, et l'ensemble D (s'il n'est pas vide) est dense en soi.

Une remarque sur la notion de l'ordre

Wacław Sierpiński (1921)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de remarquer qu'on obtient une classe établissant un ordre dans l'ensemble donné M, en considérant une classe ℳ qui vérifie les quatres conditions suivantes: 1. Les éléments de classe ℳ sont des sous-ensembles (différents de M); 2. De deux ensembles-éléments de ℳ l'un est toujours contenu dans l'autre; 3. X étant un ensemble-élément de ℳ , il existe un élement x de X qui n'est pas élément d'aucun ensemble-élément de ℳ contenu dans X; 4. La classe ℳ est saturée...

Les projections des ensembles mesurables (B) et les ensembles (A)

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

L'auteur montre que la définition des ensembles (A), données par Souslin à l'aide des systèmes déterminants intervient aussi sans aucun artifice lorsqu'on étudie les projections des ensembles mesurables (B) d'une classe assez petite. Il prouve aussi que les ensembles (A) (linéaire) coïncident avec les projections (orthogonales) des ensembles plans G_{δ} (c'est-à-dire d'ensemble qui sont produits d'une infinité dénombrable d'ensembles ouvert).

Sur quelques invariants d'Analysis Situs

Wacław Sierpiński (1922)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer: Théorème: Un ensemble homéomorphe d'un F_{ϱϱ} est un F_{ϱϱ}. Théorème: Un ensemble homéomorphe d'un F_{σϱ} est un F_{σϱ}. Théorème: Un ensemble homéomorphe d'un F_{σϱϱ} est un F_{σϱϱ}.

Sur la puissance des ensembles mesurables (B)

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer sans faire appel aux nombres transfinis et à la théorie des ensembles (A), que tout ensemble non dénombrable mesurable (B) contient un sous ensemble parfait.