Displaying similar documents to “Integrated Design of an Active Flow Control System Using a Time-Dependent Adjoint Method”

Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty

Toni Lassila, Andrea Manzoni, Alfio Quarteroni, Gianluigi Rozza (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We review the optimal design of an arterial bypass graft following either a (i) boundary optimal control approach, or a (ii) shape optimization formulation. The main focus is quantifying and treating the uncertainty in the residual flow when the hosting artery is not completely occluded, for which the worst-case in terms of recirculation effects is inferred to correspond to a strong orifice flow through near-complete occlusion.A worst-case optimal control approach is applied to the steady...

On a shape control problem for the stationary Navier-Stokes equations

Max D. Gunzburger, Hongchul Kim, Sandro Manservisi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

An optimal shape control problem for the stationary Navier-Stokes system is considered. An incompressible, viscous flow in a two-dimensional channel is studied to determine the shape of part of the boundary that minimizes the viscous drag. The adjoint method and the Lagrangian multiplier method are used to derive the optimality system for the shape gradient of the design functional.

Distributed control for multistate modified Navier-Stokes equations

Nadir Arada (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The aim of this paper is to establish necessary optimality conditions for optimal control problems governed by steady, incompressible Navier-Stokes equations with shear-dependent viscosity. The main difficulty derives from the fact that equations of this type may exhibit non-uniqueness of weak solutions, and is overcome by introducing a family of approximate control problems governed by well posed generalized Stokes systems and by passing to the limit in the corresponding optimality...

Isogeometric analysis for fluid flow problems

Bastl, Bohumír, Brandner, Marek, Egermaier, Jiří, Michálková, Kristýna, Turnerová, Eva

Similarity:

The article is devoted to the simulation of viscous incompressible fluid flow based on solving the Navier-Stokes equations. As a numerical model we chose isogeometrical approach. Primary goal of using isogemetric analysis is to be always geometrically exact, independently of the discretization, and to avoid a time-consuming generation of meshes of computational domains. For higher Reynolds numbers, we use stabilization techniques SUPG and PSPG. All methods mentioned in the paper are...

Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system

Mehdi Badra (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider...