Displaying similar documents to “A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation”

On the two-step iterative method of solving frictional contact problems in elasticity

Todor Angelov, Asterios Liolios (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.

Optimized Schwarz Methods for the Bidomain system in electrocardiology

Luca Gerardo-Giorda, Mauro Perego (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness...

On a Parallel Implementation of the Mortar Element Method

Gassav S. Abdoulaev, Yves Achdou, Yuri A. Kuznetsov, Christophe Prud'homme (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We discuss a parallel implementation of the domain decomposition method based on the macro-hybrid formulation of a second order elliptic equation and on an approximation by the mortar element method. The discretization leads to an algebraic saddle- point problem. An iterative method with a block- diagonal preconditioner is used for solving the saddle- point problem. A parallel implementation of the method is emphasized. Finally the results of numerical experiments are presented....

Splitting d'opérateur pour l'équation de transport neutronique en géométrie bidimensionnelle plane

Samir Akesbi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The aim of this work is to introduce and to analyze new algorithms for solving the transport neutronique equation in 2D geometry. These algorithms present the duplicate favors to be, on the one hand faster than some classic algorithms and easily to be implemented and naturally deviced for parallelisation on the other hand. They are based on a splitting of the collision operator holding amount of caracteristics of the transport operator. Some numerical results are given at the end...

A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation

O. Awono, J. Tagoudjeu (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We present an iterative method based on an infinite dimensional adaptation of the successive overrelaxation (SOR) algorithm for solving the 2-D neutron transport equation. In a wide range of application, the neutron transport operator admits a Self-Adjoint and m-Accretive Splitting (SAS). This splitting leads to an ADI-like iterative method which converges unconditionally and is equivalent to a fixed point problem where the operator is ...