Displaying similar documents to “Convexity estimates for flows by powers of the mean curvature”

Introduction to mean curvature flow

Roberta Alessandroni (2008-2009)

Séminaire de théorie spectrale et géométrie

Similarity:

This is a short overview on the most classical results on mean curvature flow as a flow of smooth hypersurfaces. First of all we define the mean curvature flow as a quasilinear parabolic equation and give some easy examples of evolution. Then we consider the M.C.F. on convex surfaces and sketch the proof of the convergence to a round point. Some interesting results on the M.C.F. for entire graphs are also mentioned. In particular when we consider the case of dimension one, we can compute...

Type-II singularities of two-convex immersed mean curvature flow

Theodora Bourni, Mat Langford (2016)

Geometric Flows

Similarity:

We show that any strictly mean convex translator of dimension n ≥ 3 which admits a cylindrical estimate and a corresponding gradient estimate is rotationally symmetric. As a consequence, we deduce that any translating solution of the mean curvature flow which arises as a blow-up limit of a two-convex mean curvature flow of compact immersed hypersurfaces of dimension n ≥ 3 is rotationally symmetric. The proof is rather robust, and applies to a more general class of translator equations....

The evolution of the scalar curvature of a surface to a prescribed function

Paul Baird, Ali Fardoun, Rachid Regbaoui (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We investigate the gradient flow associated to the prescribed scalar curvature problem on compact riemannian surfaces. We prove the global existence and the convergence at infinity of this flow under sufficient conditions on the prescribed function, which we suppose just continuous. In particular, this gives a uniform approach to solve the prescribed scalar curvature problem for general compact surfaces.

A survey on Inverse mean curvature flow in ROSSes

Giuseppe Pipoli (2017)

Complex Manifolds

Similarity:

In this survey we discuss the evolution by inverse mean curvature flow of star-shaped mean convex hypersurfaces in non-compact rank one symmetric spaces. We show similarities and differences between the case considered, with particular attention to how the geometry of the ambient manifolds influences the behaviour of the evolution. Moreover we try, when possible, to give an unified approach to the results present in literature.