Displaying similar documents to “Weber's class invariants revisited”

The conductor of a cyclic quartic field using Gauss sums

Blair K. Spearman, Kenneth S. Williams (1997)

Czechoslovak Mathematical Journal

Similarity:

Let Q denote the field of rational numbers. Let K be a cyclic quartic extension of Q . It is known that there are unique integers A , B , C , D such that K = Q A ( D + B D ) , where A is squarefree and odd , D = B 2 + C 2 is squarefree , B > 0 , C > 0 , G C D ( A , D ) = 1 . The conductor f ( K ) of K is f ( K ) = 2 l | A | D , where l = 3 , if D 2 ( mod 4 ) or D 1 ( mod 4 ) , B 1 ( mod 2 ) , 2 , if D 1 ( mod 4 ) , B 0 ( mod 2 ) , A + B 3 ( mod 4 ) , 0 , if D 1 ( mod 4 ) , B 0 ( mod 2 ) , A + B 1 ( mod 4 ) . A simple proof of this formula for f ( K ) is given, which uses the basic properties of quartic Gauss sums.

The diophantine equation a x 2 + b x y + c y 2 = N , D = b 2 - 4 a c > 0

Keith Matthews (2002)

Journal de théorie des nombres de Bordeaux

Similarity:

We make more accessible a neglected simple continued fraction based algorithm due to Lagrange, for deciding the solubility of a x 2 + b x y + c y 2 = N in relatively prime integers x , y , where N 0 , gcd ( a , b , c ) = gcd ( a , N ) = 1 et D = b 2 - 4 a c > 0 is not a perfect square. In the case of solubility, solutions with least positive y, from each equivalence class, are also constructed. Our paper is a generalisation of an earlier paper by the author on the equation x 2 - D y 2 = N . As in that paper, we use a lemma on unimodular matrices that gives a much simpler proof than Lagrange’s...

On some equations over finite fields

Ioulia Baoulina (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, following L. Carlitz we consider some special equations of n variables over the finite field of q elements. We obtain explicit formulas for the number of solutions of these equations, under a certain restriction on n and q .

On integral representations by totally positive ternary quadratic forms

Elise Björkholdt (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Let K be a totally real algebraic number field whose ring of integers R is a principal ideal domain. Let f ( x 1 , x 2 , x 3 ) be a totally definite ternary quadratic form with coefficients in R . We shall study representations of totally positive elements N R by f . We prove a quantitative formula relating the number of representations of N by different classes in the genus of f to the class number of R [ - c f N ] , where c f R is a constant depending only on f . We give an algebraic proof of a classical result of H. Maass...