Displaying similar documents to “Stability for a certain class of numerical methods – abstract approach and application to the stationary Navier-Stokes equations”

On a generalized Stokes problem

Václav Mácha (2011)

Open Mathematics

Similarity:

We deal with a generalization of the Stokes system. Instead of the Laplace operator, we consider a general elliptic operator and a pressure gradient with small perturbations. We investigate the existence and uniqueness of a solution as well its regularity properties. Two types of regularity are provided. Aside from the classical Hilbert regularity, we also prove the Hölder regularity for coefficients in VMO space.

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

On existence and regularity of solutions to a class of generalized stationary Stokes problem

Nguyen Duc Huy, Jana Stará (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We investigate the existence of weak solutions and their smoothness properties for a generalized Stokes problem. The generalization is twofold: the Laplace operator is replaced by a general second order linear elliptic operator in divergence form and the “pressure” gradient p is replaced by a linear operator of first order.

Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in n

Reinhard Farwig, Hermann Sohr (2009)

Czechoslovak Mathematical Journal

Similarity:

For a bounded domain Ω n , n 3 , we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system - Δ u + u · u + p = f , div u = k , u | Ω = g with u L q , q n , and very general data classes for f , k , g such that u may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of...