Displaying similar documents to “Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations”

Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods

Shanghui Jia, Hehu Xie, Xiaobo Yin, Shaoqin Gao (2009)

Applications of Mathematics

Similarity:

In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, Q 1 rot and E Q 1 rot . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations. ...

The effect of reduced integration in the Steklov eigenvalue problem

Maria G. Armentano (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.

Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system

Emmanuel Creusé, Serge Nicaise (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.

Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients

Pulin Kumar Bhattacharyya, Neela Nataraj (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field...

Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem

Xinlong Feng, Zhifeng Weng, Hehu Xie (2014)

Applications of Mathematics

Similarity:

This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical...