Displaying similar documents to “Macroscopic models of collective motion and self-organization”

Fragmentation-Coagulation Models of Phytoplankton

Ryszard Rudnicki, Radosław Wieczorek (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We present two new models of the dynamics of phytoplankton aggregates. The first one is an individual-based model. Passing to infinity with the number of individuals, we obtain an Eulerian model. This model describes the evolution of the density of the spatial-mass distribution of aggregates. We show the existence and uniqueness of solutions of the evolution equation.

A Coherent Derivation of an Average Ion Model Including the Evolution of Correlations Between Different Shells

Daniel Bouche, Alain Decoster, Laurent Desvillettes, Valeria Ricci (2013)

MathematicS In Action

Similarity:

We propose in this short note a method enabling to write in a systematic way a set of refined equations for average ion models in which correlations between populations are taken into account, starting from a microscopic model for the evolution of the electronic configuration probabilities. Numerical simulations illustrating the improvements with respect to standard average ion models are presented at the end of the paper.

When a first order T has limit models

Saharon Shelah (2012)

Colloquium Mathematicae

Similarity:

We sort out to a large extent when a (first order complete theory) T has a superlimit model in a cardinal λ. Also we deal with related notions of being limit.