Displaying similar documents to “The number of squares and B h [ g ] sets”

Exceptional sets in Waring's problem: two squares and s biquadrates

Lilu Zhao (2014)

Acta Arithmetica

Similarity:

Let R s ( n ) denote the number of representations of the positive number n as the sum of two squares and s biquadrates. When s = 3 or 4, it is established that the anticipated asymptotic formula for R s ( n ) holds for all n X with at most O ( X ( 9 - 2 s ) / 8 + ε ) exceptions.

Equivalence classes of Latin squares and nets in P 2

Corey Dunn, Matthew Miller, Max Wakefield, Sebastian Zwicknagl (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The fundamental combinatorial structure of a net in P 2 is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in P 2 . Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in P 2 are empty to show some non-existence results for 4-nets in P 2 .

A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case

Fateme Kouchakinejad, Alexandra Šipošová (2017)

Kybernetika

Similarity:

For an aggregation function A we know that it is bounded by A * and A * which are its super-additive and sub-additive transformations, respectively. Also, it is known that if A * is directionally convex, then A = A * and A * is linear; similarly, if A * is directionally concave, then A = A * and A * is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively. ...

On Meager Additive and Null Additive Sets in the Cantor Space 2 ω and in ℝ

Tomasz Weiss (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let T be the standard Cantor-Lebesgue function that maps the Cantor space 2 ω onto the unit interval ⟨0,1⟩. We prove within ZFC that for every X 2 ω , X is meager additive in 2 ω iff T(X) is meager additive in ⟨0,1⟩. As a consequence, we deduce that the cartesian product of meager additive sets in ℝ remains meager additive in ℝ × ℝ. In this note, we also study the relationship between null additive sets in 2 ω and ℝ.

L p , q spaces

Joseph Kupka

Similarity:

CONTENTS1. Introduction...................................................................................................... 52. Notation and basic terminology........................................................................... 73. Definition and basic properties of the L p , q spaces................................. 114. Integral representation of bounded linear functionals on L p , q ( B ) ........ 235. Examples in L p , q theory...................................................................................

On C * -spaces

P. Srivastava, K. K. Azad (1981)

Matematički Vesnik

Similarity: