Displaying similar documents to “A mixed finite element method for plate bending with a unilateral inner obstacle”

A boundary multivalued integral “equation” approach to the semipermeability problem

Jaroslav Haslinger, Charalambos C. Baniotopoulos, Panagiotis D. Panagiotopoulos (1993)

Applications of Mathematics

Similarity:

The present paper concerns the problem of the flow through a semipermeable membrane of infinite thickness. The semipermeability boundary conditions are first considered to be monotone; these relations are therefore derived by convex superpotentials being in general nondifferentiable and nonfinite, and lead via a suitable application of the saddlepoint technique to the formulation of a multivalued boundary integral equation. The latter is equivalent to a boundary minimization problem...

Finite element solution of a hyperbolic-parabolic problem

Rudolf Hlavička (1994)

Applications of Mathematics

Similarity:

Existence and finite element approximation of a hyperbolic-parabolic problem is studied. The original two-dimensional domain is approximated by a polygonal one (external approximations). The time discretization is obtained using Euler’s backward formula (Rothe’s method). Under certain smoothing assumptions on the data (see (2.6), (2.7)) the existence and uniqueness of the solution and the convergence of Rothe’s functions in the space C ( I ¯ , V ) is proved.

Finite element solution of a stationary heat conduction equation with the radiation boundary condition

Zdeněk Milka (1993)

Applications of Mathematics

Similarity:

In this paper we present a weak formulation of a two-dimensional stationary heat conduction problem with the radiation boundary condition. The problem can be described by an operator which is monotone on the convex set of admissible functions. The relation between classical and weak solutions as well as the convergence of the finite element method to the weak solution in the norm of the Sobolev space H 1 ( Ω ) are examined.

Weight minimization of an elastic plate with a unilateral inner obstacle by a mixed finite element method

Ivan Hlaváček (1994)

Applications of Mathematics

Similarity:

Unilateral deflection problem of a clamped plate above a rigid inner obstacle is considered. The variable thickness of the plate is to be optimized to reach minimal weight under some constraints for maximal stresses. Since the constraints are expressed in terms of the bending moments only, Herrmann-Hellan finite element scheme is employed. The existence of an optimal thickness is proved and some convergence analysis for approximate penalized optimal design problem is presented. ...