The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 26

Showing per page

On an arithmetic function considered by Pillai

Florian Luca, Ravindranathan Thangadurai (2009)

Journal de Théorie des Nombres de Bordeaux

For every positive integer n let p ( n ) be the largest prime number p n . Given a positive integer n = n 1 , we study the positive integer r = R ( n ) such that if we define recursively n i + 1 = n i - p ( n i ) for i 1 , then n r is a prime or 1 . We obtain upper bounds for R ( n ) as well as an estimate for the set of n whose R ( n ) takes on a fixed value k .

On Gelfond’s conjecture about the sum of digits of prime numbers

Joël Rivat (2009)

Journal de Théorie des Nombres de Bordeaux

The goal of this paper is to outline the proof of a conjecture of Gelfond [6] (1968) in a recent work in collaboration with Christian Mauduit [11] concerning the sum of digits of prime numbers, reflecting the lecture given in Edinburgh at the Journées Arithmétiques 2007.

On some problems of Mąkowski-Schinzel and Erdős concerning the arithmetical functions ϕ and σ

Florian Luca, Carl Pomerance (2002)

Colloquium Mathematicae

Let σ(n) denote the sum of positive divisors of the integer n, and let ϕ denote Euler's function, that is, ϕ(n) is the number of integers in the interval [1,n] that are relatively prime to n. It has been conjectured by Mąkowski and Schinzel that σ(ϕ(n))/n ≥ 1/2 for all n. We show that σ(ϕ(n))/n → ∞ on a set of numbers n of asymptotic density 1. In addition, we study the average order of σ(ϕ(n))/n as well as its range. We use similar methods to prove a conjecture of Erdős that ϕ(n-ϕ(n)) < ϕ(n)...

On the counting function for the generalized Niven numbers

Ryan Daileda, Jessica Jou, Robert Lemke-Oliver, Elizabeth Rossolimo, Enrique Treviño (2009)

Journal de Théorie des Nombres de Bordeaux

Given an integer base q 2 and a completely q -additive arithmetic function f taking integer values, we deduce an asymptotic expression for the counting function N f ( x ) = # 0 n &lt; x | f ( n ) n under a mild restriction on the values of f . When f = s q , the base q sum of digits function, the integers counted by N f are the so-called base q Niven numbers, and our result provides a generalization of the asymptotic known in that case.

On the largest prime factor of n ! + 2 n - 1

Florian Luca, Igor E. Shparlinski (2005)

Journal de Théorie des Nombres de Bordeaux

For an integer n 2 we denote by P ( n ) the largest prime factor of n . We obtain several upper bounds on the number of solutions of congruences of the form n ! + 2 n - 1 0 ( mod q ) and use these bounds to show that lim sup n P ( n ! + 2 n - 1 ) / n ( 2 π 2 + 3 ) / 18 .

On the mean square of the divisor function in short intervals

Aleksandar Ivić (2009)

Journal de Théorie des Nombres de Bordeaux

We provide upper bounds for the mean square integral X 2 X 𝔻 k ( x + h ) - 𝔻 k ( x ) 2 d x , where h = h ( X ) 1 , h = o ( x ) as X and h lies in a suitable range. For k 2 a fixed integer, 𝔻 k ( x ) is the error term in the asymptotic formula for the summatory function of the divisor function d k ( n ) , generated by ζ k ( s ) .

Currently displaying 1 – 20 of 26

Page 1 Next