The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 23

Showing per page

A note on solvable vertex stabilizers of s -transitive graphs of prime valency

Song-Tao Guo, Hailong Hou, Yong Xu (2015)

Czechoslovak Mathematical Journal

A graph X , with a group G of automorphisms of X , is said to be ( G , s ) -transitive, for some s 1 , if G is transitive on s -arcs but not on ( s + 1 ) -arcs. Let X be a connected ( G , s ) -transitive graph of prime valency p 5 , and G v the vertex stabilizer of a vertex v V ( X ) . Suppose that G v is solvable. Weiss (1974) proved that | G v | p ( p - 1 ) 2 . In this paper, we prove that G v ( p m ) × n for some positive integers m and n such that n div m and m p - 1 .

Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups

Mehdi Alaeiyan (2006)

Discussiones Mathematicae Graph Theory

Let G be a finite group, and let 1 G S G . A Cayley di-graph Γ = Cay(G,S) of G relative to S is a di-graph with a vertex set G such that, for x,y ∈ G, the pair (x,y) is an arc if and only if y x - 1 S . Further, if S = S - 1 : = s - 1 | s S , then Γ is undirected. Γ is conected if and only if G = ⟨s⟩. A Cayley (di)graph Γ = Cay(G,S) is called normal if the right regular representation of G is a normal subgroup of the automorphism group of Γ. A graph Γ is said to be arc-transitive, if Aut(Γ) is transitive on an arc set. Also, a graph Γ...

Currently displaying 1 – 20 of 23

Page 1 Next