The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 40 of 40

Showing per page

Generalized fractional integrals on central Morrey spaces and generalized λ-CMO spaces

Katsuo Matsuoka (2014)

Banach Center Publications

We introduce the generalized fractional integrals I ̃ α , d and prove the strong and weak boundedness of I ̃ α , d on the central Morrey spaces B p , λ ( ) . In order to show the boundedness, the generalized λ-central mean oscillation spaces Λ p , λ ( d ) ( ) and the generalized weak λ-central mean oscillation spaces W Λ p , λ ( d ) ( ) play an important role.

Generalized midconvexity

Jacek Tabor, Józef Tabor, Krzysztof Misztal (2013)

Banach Center Publications

There are many types of midconvexities, for example Jensen convexity, t-convexity, (s,t)-convexity. We provide a uniform framework for all the above mentioned midconvexities by considering a generalized middle-point map on an abstract space X. We show that we can define and study the basic convexity properties in this setting.

Generalized α-variation and Lebesgue equivalence to differentiable functions

Jakub Duda (2009)

Fundamenta Mathematicae

We find conditions on a real function f:[a,b] → ℝ equivalent to being Lebesgue equivalent to an n-times differentiable function (n ≥ 2); a simple solution in the case n = 2 appeared in an earlier paper. For that purpose, we introduce the notions of C B V G 1 / n and S B V G 1 / n functions, which play analogous rôles for the nth order differentiability to the classical notion of a VBG⁎ function for the first order differentiability, and the classes C B V 1 / n and S B V 1 / n (introduced by Preiss and Laczkovich) for Cⁿ smoothness. As a consequence,...

Generic chaos

Ľubomír Snoha (1990)

Commentationes Mathematicae Universitatis Carolinae

Growth orders occurring in expansions of Hardy-field solutions of algebraic differential equations

John Shackell (1995)

Annales de l'institut Fourier

We consider the asymptotic growth of Hardy-field solutions of algebraic differential equations, e.g. solutions with no oscillatory component, and prove that no ‘sub-term’ occurring in a nested expansion of such can tend to zero more rapidly than a fixed rate depending on the order of the differential equation. We also consider series expansions. An example of the results obtained may be stated as follows.Let g be an element of a Hardy field which has an asymptotic series expansion in x , e x and λ ,...

Currently displaying 21 – 40 of 40

Previous Page 2