The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...
Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered.
The non-smoothness arises from a L1-norm in the objective functional.
The problem is regularized to permit the use of the semi-smooth Newton
method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...
We present a convergence analysis of a cell-based finite volume (FV)
discretization scheme applied to a problem of control in the
coefficients of a generalized Laplace equation modelling, for
example, a steady state heat conduction.
Such problems arise in applications dealing with geometric optimal
design, in particular shape and topology optimization, and are most
often solved numerically utilizing a finite element approach.
Within the FV framework for control in the coefficients problems
...
We present a convergence analysis of a cell-based finite volume (FV)
discretization scheme applied to a problem of control in the
coefficients of a generalized Laplace equation modelling, for
example, a steady state heat conduction.
Such problems arise in applications dealing with geometric optimal
design, in particular shape and topology optimization, and are most
often solved numerically utilizing a finite element approach.
Within the FV framework for control in the coefficients problems
...
In this article we modify an iteration process to prove strong convergence and Δ- convergence theorems for a finite family of nonexpansive multivalued mappings in hyperbolic spaces. The results presented here extend some existing results in the literature.
Currently displaying 1 –
6 of
6