Displaying 2001 – 2020 of 4977

Showing per page

Hyperspaces of Peano continua of euclidean spaces

Helma Gladdines, Jan van Mill (1993)

Fundamenta Mathematicae

If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space L ( n ) is homeomorphic to B , where B denotes the pseudo-boundary of the Hilbert cube Q.

Hypersurfaces in n and critical points in their external region

P. M. G. Manchón (2002)

Czechoslovak Mathematical Journal

In this paper we study the hypersurfaces M n given as connected compact regular fibers of a differentiable map f : n + 1 , in the cases in which f has finitely many nondegenerate critical points in the unbounded component of n + 1 - M n .

Hypersurfaces intégrales des feuilletages holomorphes

Felipe Cano, Jean-François Mattei (1992)

Annales de l'institut Fourier

Soit ω un germe en 0 C n de 1-forme différentielle holomorphe, satisfaisant la condition d’intégrabilité ω d ω = 0 et non dicritique, i.e. sur toute surface Z non intégrale de ω , on ne peut tracer, au voisinage de 0, qu’un nombre fini de germes de courbes analytiques ( Γ i , P i ) , intégrales de ω , avec P i Z Sing ω . Alors ω possède un germe d’hypersurface analytique intégrale.

Ideal triangulations of hyperbolic 3 -manifolds

Carlo Petronio (2000)

Bollettino dell'Unione Matematica Italiana

Quello delle triangolazioni geodetiche ideali è un metodo molto potente per costruire strutture iperboliche complete di volume finito su 3-varietà non compatte, ma non è noto se il metodo sia applicabile in generale. È tuttavia noto che esistono triangolazioni ideali parzialmente piatte, ma l'analisi della situazione diviene più ardua sotto diversi aspetti, quando si ha a che fare con tetraedri piatti oltre che veri tetraedri. In particolare, la topologia dello spazio di identificazione può degenerare,...

Incompressibilité des feuilles de germes de feuilletages holomorphes singuliers

David Marín, Jean-François Mattei (2008)

Annales scientifiques de l'École Normale Supérieure

Nous considérons un germe de feuilletage holomorphe singulier non-dicritique défini sur une boule fermée 𝔹 ¯ 2 , satisfaisant des hypothèses génériques, de courbe de séparatrice S . Nous démontrons l’existence d’un voisinage ouvert U de S dans 𝔹 ¯ tel que, pour toute feuille L de | ( U S ) , l’inclusion naturelle ı : L U S induit un monomorphisme ı * : π 1 ( L ) π 1 ( U S ) au niveau du groupe fondamental. Pour cela, nous introduisons la notion géométrique de « connexité feuilletée » avec laquelle nous réinterprétons la notion d’incompressibilité....

Currently displaying 2001 – 2020 of 4977