A system of simultaneous congruences arising from trinomial exponential sums

Todd Cochrane[1]; Jeremy Coffelt[1]; Christopher Pinner[1]

  • [1] Department of Mathematics Kansas State University Manhattan, KS 66506, USA

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 1, page 59-72
  • ISSN: 1246-7405

Abstract

top
For a prime p and positive integers < k < h < p with d = ( h , k , , p - 1 ) , we show that M , the number of simultaneous solutions x , y , z , w in p * to x h + y h = z h + w h , x k + y k = z k + w k , x + y = z + w , satisfies M 3 d 2 ( p - 1 ) 2 + 25 h k ( p - 1 ) . When h k = o ( p d 2 ) we obtain a precise asymptotic count on M . This leads to the new twisted exponential sum bound x = 1 p - 1 χ ( x ) e 2 π i f ( x ) / p 3 1 4 d 1 2 p 7 8 + 5 h k 1 4 p 5 8 , for trinomials f = a x h + b x k + c x , and to results on the average size of such sums.

How to cite

top

Cochrane, Todd, Coffelt, Jeremy, and Pinner, Christopher. "A system of simultaneous congruences arising from trinomial exponential sums." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 59-72. <http://eudml.org/doc/249632>.

@article{Cochrane2006,
abstract = {For a prime $p$ and positive integers $\ell &lt;k&lt;h&lt;p$ with $d=(h,k,\ell ,p-1)$, we show that $M$, the number of simultaneous solutions $x, y, z, w$ in $\mathbb\{Z\}_p^*$ to $x^h+y^h=z^h+w^h$, $x^k+y^k=z^k+w^k$, $x^\{\ell \}+y^\{\ell \}=z^\{\ell \}+w^\{\ell \}$, satisfies\[\displaystyle M\le 3d^2(p-1)^2+25hk\ell (p-1).\]When $hk\ell =o(pd^2)$ we obtain a precise asymptotic count on $M$. This leads to the new twisted exponential sum bound\[\displaystyle \left|\sum \_\{x=1\}^\{p-1\}\chi (x) e^\{2\pi i f(x)/p\}\right| \le 3^\{\frac\{1\}\{4\}\}d^\{\frac\{1\}\{2\}\}p^\{\frac\{7\}\{8\}\} + \sqrt\{5\} \left(hk\ell \right)^\{\frac\{1\}\{4\}\}p^\{\frac\{5\}\{8\}\},\]for trinomials $f=ax^h+bx^k+cx^\ell $, and to results on the average size of such sums.},
affiliation = {Department of Mathematics Kansas State University Manhattan, KS 66506, USA; Department of Mathematics Kansas State University Manhattan, KS 66506, USA; Department of Mathematics Kansas State University Manhattan, KS 66506, USA},
author = {Cochrane, Todd, Coffelt, Jeremy, Pinner, Christopher},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {system of simultaneous congruences; trinomial exponential sums},
language = {eng},
number = {1},
pages = {59-72},
publisher = {Université Bordeaux 1},
title = {A system of simultaneous congruences arising from trinomial exponential sums},
url = {http://eudml.org/doc/249632},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Cochrane, Todd
AU - Coffelt, Jeremy
AU - Pinner, Christopher
TI - A system of simultaneous congruences arising from trinomial exponential sums
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 59
EP - 72
AB - For a prime $p$ and positive integers $\ell &lt;k&lt;h&lt;p$ with $d=(h,k,\ell ,p-1)$, we show that $M$, the number of simultaneous solutions $x, y, z, w$ in $\mathbb{Z}_p^*$ to $x^h+y^h=z^h+w^h$, $x^k+y^k=z^k+w^k$, $x^{\ell }+y^{\ell }=z^{\ell }+w^{\ell }$, satisfies\[\displaystyle M\le 3d^2(p-1)^2+25hk\ell (p-1).\]When $hk\ell =o(pd^2)$ we obtain a precise asymptotic count on $M$. This leads to the new twisted exponential sum bound\[\displaystyle \left|\sum _{x=1}^{p-1}\chi (x) e^{2\pi i f(x)/p}\right| \le 3^{\frac{1}{4}}d^{\frac{1}{2}}p^{\frac{7}{8}} + \sqrt{5} \left(hk\ell \right)^{\frac{1}{4}}p^{\frac{5}{8}},\]for trinomials $f=ax^h+bx^k+cx^\ell $, and to results on the average size of such sums.
LA - eng
KW - system of simultaneous congruences; trinomial exponential sums
UR - http://eudml.org/doc/249632
ER -

References

top
  1. N. M. Akuliničev, Estimates for rational trigonometric sums of a special type. Doklady Acad. Sci. USSR 161 (1965), 743–745. English trans in Doklady 161, no. 4 (1965), 480–482. Zbl0127.02102MR177956
  2. T. Cochrane & C. Pinner, An improved Mordell type bound for exponential sums. Proc. Amer. Math. Soc. 133 (2005), 313–320. Zbl1068.11053MR2093050
  3. T. Cochrane, J. Coffelt & C. Pinner, A further refinement of Mordell’s bound on exponential sums. Acta Arith. 116 (2005), 35–41. Zbl1082.11050MR2114903
  4. R. Lidl & H. Niederreiter, Finite Fields. Encyclopedia of mathematics and its applications, Addison-Wesley, 1983. Zbl0554.12010MR746963
  5. L. J. Mordell, On a sum analogous to a Gauss’s sum. Quart. J. Math. 3 (1932), 161–167. Zbl0005.24603
  6. A. Weil, On some exponential sums. Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207. Zbl0032.26102MR27006
  7. T. Wooley, A note on simultaneous congruences. J. Number Theory 58 (1996), no. 2, 288–297. Zbl0852.11017MR1393617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.