On the rate of convergence of a collocation projection of the KdV equation

Henrik Kalisch; Xavier Raynaud

ESAIM: Mathematical Modelling and Numerical Analysis (2007)

  • Volume: 41, Issue: 1, page 95-110
  • ISSN: 0764-583X

Abstract

top
Based on estimates for the KdV equation in analytic Gevrey classes, a spectral collocation approximation of the KdV equation is proved to converge exponentially fast.

How to cite

top

Kalisch, Henrik, and Raynaud, Xavier. "On the rate of convergence of a collocation projection of the KdV equation." ESAIM: Mathematical Modelling and Numerical Analysis 41.1 (2007): 95-110. <http://eudml.org/doc/250023>.

@article{Kalisch2007,
abstract = { Based on estimates for the KdV equation in analytic Gevrey classes, a spectral collocation approximation of the KdV equation is proved to converge exponentially fast. },
author = {Kalisch, Henrik, Raynaud, Xavier},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Spectral methods; convergence rate; collocation projection; analytic Gevrey class.; collocation; error analysis; periodic Korteweg-de Vries (KdV) equation; convergence},
language = {eng},
month = {4},
number = {1},
pages = {95-110},
publisher = {EDP Sciences},
title = {On the rate of convergence of a collocation projection of the KdV equation},
url = {http://eudml.org/doc/250023},
volume = {41},
year = {2007},
}

TY - JOUR
AU - Kalisch, Henrik
AU - Raynaud, Xavier
TI - On the rate of convergence of a collocation projection of the KdV equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/4//
PB - EDP Sciences
VL - 41
IS - 1
SP - 95
EP - 110
AB - Based on estimates for the KdV equation in analytic Gevrey classes, a spectral collocation approximation of the KdV equation is proved to converge exponentially fast.
LA - eng
KW - Spectral methods; convergence rate; collocation projection; analytic Gevrey class.; collocation; error analysis; periodic Korteweg-de Vries (KdV) equation; convergence
UR - http://eudml.org/doc/250023
ER -

References

top
  1. R. Beals, P. Deift and C. Tomei, Direct and inverse scattering on the line. Mathematical Surveys and Monographs 28, American Mathematical Society, Providence, RI (1988).  
  2. J.L. Bona and Z. Grujić, Spatial analyticity for nonlinear waves. Math. Models Methods Appl. Sci.13 (2003) 1–15.  
  3. J.L. Bona, Z. Grujić and H. Kalisch, Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation. Ann. Inst. H. Poincaré, Anal. Non Linéaire22 (2005) 783–797.  
  4. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. GAFA3 (1993) 107–156, 209–262.  
  5. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl.17 (1872) 55–108.  
  6. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics. Springer, Berlin (1988).  
  7. J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications. J. Funct. Anal.211 (2004) 173–218.  
  8. J.M. Cooley and J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comp.19 (1965) 297–301.  
  9. A. Doelman and E.S. Titi, Regularity of solutions and the convergence of the Galerkin method in the Ginzburg-Landau equation. Numer. Funct. Anal. Optim.14 (1993) 299–321.  
  10. P.G. Drazin and R.S. Johnson, Solitons: an introduction, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1989).  
  11. A.B. Ferrari and E.S. Titi, Gevrey regularity for nonlinear analytic parabolic equations. Comm. Partial Differential Equations23 (1998) 1–16.  
  12. C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Functional Anal.87 (1989) 359–369.  
  13. Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. Diff. Integral Eq.15 (2002) 1325–1334.  
  14. N. Hayashi, Analyticity of solutions of the Korteweg-de Vries equation. SIAM J. Math. Anal.22 (1991) 1738–1743.  
  15. N. Hayashi, Solutions of the (generalized) Korteweg-de Vries equation in the Bergman and Szegö spaces on a sector. Duke Math. J.62 (1991) 575–591.  
  16. H. Kalisch, Rapid convergence of a Galerkin projection of the KdV equation. C. R. Math.341 (2005) 457–460.  
  17. T. Kappeler and P. Topalov, Global well-posedness of KdV in H - 1 ( 𝕋 , ) . Duke Math. J.7135 (2006) 327–360.  
  18. T. Kato and K. Masuda, Nonlinear evolution equations and analyticity I. Ann. Inst. Henri Poincaré, Anal. Non Linéaire3 (1986) 455–467.  
  19. C.E Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc.9 (1996) 573–603.  
  20. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave. Philos. Mag.39 (1895) 422–443.  
  21. H.-O. Kreiss and J. Oliger, Stability of the Fourier method. SIAM J. Numer. Anal.16 (1979) 421–433.  
  22. C.D. Levermore and M. Oliver, Analyticity of solutions for a generalized Euler equation. J. Differential Equations133 (1997) 321–339.  
  23. Y. Maday and A. Quarteroni, Error analysis for spectral approximation of the Korteweg-de Vries equation. RAIRO Modél. Math. Anal. Numér.22 (1988) 499–529.  
  24. J.E. Pasciak, Spectral and pseudospectral methods for advection equations. Math. Comput.35 (1980) 1081–1092.  
  25. E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal.23 (1986) 1–10.  
  26. T. Taha and M. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation. J. Comput. Phys.55 (1984) 231–253.  
  27. R. Temam, Sur un problème non linéaire. J. Math. Pures Appl.48 (1969) 159–172.  
  28. G.B. Whitham, Linear and Nonlinear Waves. Wiley, New York (1974).  
  29. N.J. Zabusky and M.D. Kruskal, Interaction of solutions in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett.15 (1965) 240–243.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.