Periodic singular problem with quasilinear differential operator

Irena Rachůnková; Milan Tvrdý

Mathematica Bohemica (2006)

  • Volume: 131, Issue: 3, page 321-336
  • ISSN: 0862-7959

Abstract

top
We study the singular periodic boundary value problem of the form φ ( u ' ) ' + h ( u ) u ' = g ( u ) + e ( t ) , u ( 0 ) = u ( T ) , u ' ( 0 ) = u ' ( T ) , where φ is an increasing and odd homeomorphism such that φ ( ) = , h C [ 0 , ) , e L 1 J and g C ( 0 , ) can have a space singularity at x = 0 , i.e.  lim sup x 0 + | g ( x ) | = may hold. We prove new existence results both for the case of an attractive singularity, when lim inf x 0 + g ( x ) = - , and for the case of a strong repulsive singularity, when lim x 0 + x 1 g ( ξ ) d ξ = . In the latter case we assume that φ ( y ) = φ p ( y ) = | y | p - 2 y , p > 1 , is the well-known p -Laplacian. Our results extend and complete those obtained recently by Jebelean and Mawhin and by Liu Bing.

How to cite

top

Rachůnková, Irena, and Tvrdý, Milan. "Periodic singular problem with quasilinear differential operator." Mathematica Bohemica 131.3 (2006): 321-336. <http://eudml.org/doc/249905>.

@article{Rachůnková2006,
abstract = {We study the singular periodic boundary value problem of the form \[ \left(\phi (u^\{\prime \})\right)^\{\prime \}+h(u)u^\{\prime \}=g(u)+e(t),\quad u(0)=u(T),\quad u^\{\prime \}(0)=u^\{\prime \}(T), \] where $\phi \:\mathbb \{R\}\rightarrow \mathbb \{R\}$ is an increasing and odd homeomorphism such that $\phi (\mathbb \{R\})=\mathbb \{R\},$$h\in C[0,\infty ),$$e\in L_1J$ and $g\in C(0,\infty )$ can have a space singularity at $x=0,$ i.e. $\limsup _\{x\rightarrow 0+\}|g(x)|=\infty $ may hold. We prove new existence results both for the case of an attractive singularity, when $\liminf _\{x\rightarrow 0+\}g(x)=-\infty ,$ and for the case of a strong repulsive singularity, when $\lim _\{x\rightarrow 0+\}\int _x^1g(\xi )\hspace\{0.56905pt\}\text\{d\}\xi =\infty .$ In the latter case we assume that $\phi (y)=\phi _p(y)=|y|^\{p-2\}y,$$p>1,$ is the well-known $p$-Laplacian. Our results extend and complete those obtained recently by Jebelean and Mawhin and by Liu Bing.},
author = {Rachůnková, Irena, Tvrdý, Milan},
journal = {Mathematica Bohemica},
keywords = {singular periodic boundary value problem; positive solution; $\phi $-Laplacian; $p$-Laplacian; attractive singularity; repulsive singularity; strong singularity; lower function; upper function; singular periodic boundary value problem; positive solution; -Laplacian},
language = {eng},
number = {3},
pages = {321-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic singular problem with quasilinear differential operator},
url = {http://eudml.org/doc/249905},
volume = {131},
year = {2006},
}

TY - JOUR
AU - Rachůnková, Irena
AU - Tvrdý, Milan
TI - Periodic singular problem with quasilinear differential operator
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 3
SP - 321
EP - 336
AB - We study the singular periodic boundary value problem of the form \[ \left(\phi (u^{\prime })\right)^{\prime }+h(u)u^{\prime }=g(u)+e(t),\quad u(0)=u(T),\quad u^{\prime }(0)=u^{\prime }(T), \] where $\phi \:\mathbb {R}\rightarrow \mathbb {R}$ is an increasing and odd homeomorphism such that $\phi (\mathbb {R})=\mathbb {R},$$h\in C[0,\infty ),$$e\in L_1J$ and $g\in C(0,\infty )$ can have a space singularity at $x=0,$ i.e. $\limsup _{x\rightarrow 0+}|g(x)|=\infty $ may hold. We prove new existence results both for the case of an attractive singularity, when $\liminf _{x\rightarrow 0+}g(x)=-\infty ,$ and for the case of a strong repulsive singularity, when $\lim _{x\rightarrow 0+}\int _x^1g(\xi )\hspace{0.56905pt}\text{d}\xi =\infty .$ In the latter case we assume that $\phi (y)=\phi _p(y)=|y|^{p-2}y,$$p>1,$ is the well-known $p$-Laplacian. Our results extend and complete those obtained recently by Jebelean and Mawhin and by Liu Bing.
LA - eng
KW - singular periodic boundary value problem; positive solution; $\phi $-Laplacian; $p$-Laplacian; attractive singularity; repulsive singularity; strong singularity; lower function; upper function; singular periodic boundary value problem; positive solution; -Laplacian
UR - http://eudml.org/doc/249905
ER -

References

top
  1. 10.12775/TMNA.2003.041, Topol. Methods Nonlinear Anal. 22 (2003), 297–317. (2003) MR2036378DOI10.12775/TMNA.2003.041
  2. 10.3934/dcds.2002.8.907, Discrete Contin. Dyn. Syst. 8 (2002), 907–930. (2002) MR1920651DOI10.3934/dcds.2002.8.907
  3. Existence result for the problem φ ( u ' ) ' = f ( t , u , u ' ) with periodic and Neumann boundary conditions, Nonlinear Anal., Theory Methods Appl. 30 (1997), 1733–1742. (1997) MR1490088
  4. T -periodic solutions for some second order differential equations with singularities, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 231–243. (1992) MR1159183
  5. 10.1016/0362-546X(92)90048-J, Nonlinear Anal., Theory Methods Appl. 18 (1992), 79–92. (1992) MR1138643DOI10.1016/0362-546X(92)90048-J
  6. Systèmes différentiels non linéaires ayant des solutions périodiques, Acad. R. Belgique, Bull. Cl. Sci. 49 (1963), 11–32. (1963) 
  7. Solvability and Bifurcation of Nonlinear Equations, Research Notes in Math. Vol. 264, Pitman, Boston, 1992. (1992) MR1175397
  8. 10.5802/aif.170, Ann. Inst. Fourier (Grenoble) 14 (1964), 195–204. (1964) MR0166444DOI10.5802/aif.170
  9. Periodic solution of scalar second order differential equations with a singularity, Acad R. Belgique, Mém. Cl. Sci. 4 (1993), 1–39. (1993) MR1259048
  10. Détermination approachée et stabilité locale de la solution périodique d’une equation différentielle non linéaire, Mém. Public. Soc. Sci. Arts Letters Hainaut 76 (1962), 3–13. (1962) MR0149009
  11. 10.1007/BF03322042, Result. Math. 34 (1998), 108–119. (1998) MR1635588DOI10.1007/BF03322042
  12. Periodic solutions of some Liénard equations with singularities, Proc. Amer. Math. Soc. 109 (1990), 1035–1044. (1990) MR1009991
  13. Sur l’existence d’une solution périodique de l’equation différentielle non linéaire u ' ' + 0 . 2 u ' + u / ( 1 - u ) = 0 . 5 cos ω t , Acad. R. Belgique, Bull. Cl. Sci. 48 (1962), 494–504. (1962) MR0142838
  14. Periodic solutions of singular nonlinear perturbations of the ordinary p -Laplacian, Adv. Nonlinear Stud. 2 (2002), 299–312. (2002) MR1918967
  15. Periodic solutions of forced dissipative p -Liénard equations with singularities, Vietnam J. Math. 32 (2004), 97–103. (2004) MR2120634
  16. 10.4064/ap-65-3-265-270, Ann. Polon. Math. 65 (1997), 265–270. (1997) MR1441181DOI10.4064/ap-65-3-265-270
  17. 10.1090/S0002-9939-1987-0866438-7, Proc. Amer. Math. Soc. 99 (1987), 109–114. (1987) MR0866438DOI10.1090/S0002-9939-1987-0866438-7
  18. 10.4064/ap79-2-2, Ann. Pol. Math. 79 (2002), 109–120. (2002) Zbl1024.34037MR1957886DOI10.4064/ap79-2-2
  19. Topological degree and boundary value problems for nonlinear differential equations, Topological Methods for Ordinary Differential Equations, M. Furi, P. Zecca (eds.), Lecture Notes in Mathematics, Vol. 1537, Springer, Berlin, 1993, pp. 74–142. (1993) Zbl0798.34025MR1226930
  20. 10.1006/jdeq.1998.3425, J. Differential Equations 145 (1998), 367–393. (1998) MR1621038DOI10.1006/jdeq.1998.3425
  21. Periodic Solutions of Systems with p -Laplacian-like Operators, Nonlinear Analysis and its Applications to Differential Equations, M. R. Grossinho, M. Ramos, C. Rebelo, L. Sanchez (eds.), Progress in Nonlinear Differerential Equations and their Applications, Vol. 43, Birkhäuser, Boston, 2001, pp.  37–63. (2001) Zbl1016.34042MR1800613
  22. Necessary and sufficient conditions for the existence of periodic solutions of second order ordinary differential equations with singular nonlinearities, Differ. Integral Equ. 8 (1995), 1843–1858. (1995) Zbl0831.34048MR1347985
  23. 10.1016/j.na.2004.09.017, Nonlinear Anal., Theory Methods Appl. 63 (2005), e257–e266. (2005) DOI10.1016/j.na.2004.09.017
  24. Periodic problems with φ -Laplacian involving non-ordered lower and upper functions, Fixed Point Theory 6 (2005), 99–112. (2005) MR2133109
  25. 10.1006/jdeq.2000.3995, J. Differential Equations 176 (2001), 445–469. (2001) MR1866282DOI10.1006/jdeq.2000.3995
  26. Resonance and multiplicity in periodic BVPs with singularity, Math. Bohem. 128 (2003), 45–70. (2003) MR1973424
  27. 10.18514/MMN.2000.19, Math. Notes (Miskolc) 1 (2000), 63–81. (2000) MR1793262DOI10.18514/MMN.2000.19
  28. 10.1016/S0022-0396(02)00152-3, J. Differential Equations 190 (2003), 643–662. (2003) Zbl1032.34040MR1970045DOI10.1016/S0022-0396(02)00152-3
  29. 10.1016/S0022-247X(03)00383-4, J. Math. Anal. Appl. 285 (2003), 141–154. (2003) Zbl1037.34037MR2000145DOI10.1016/S0022-247X(03)00383-4
  30. 10.1006/jmaa.1996.0378, J. Math. Anal. Appl. 203 (1996), 254–269. (1996) Zbl0863.34039MR1412492DOI10.1006/jmaa.1996.0378
  31. 10.1016/S0362-546X(96)00037-5, Nonlinear Anal., Theory Methods Appl. 29 (1997), 41–51. (1997) Zbl0876.35039MR1447568DOI10.1016/S0362-546X(96)00037-5
  32. A relationship between the periodic and the Dirichlet BVPs of singular differential equations, Proc. Roy. Soc. Edinburgh Sect. A 128A (1998), 1099–1114. (1998) Zbl0918.34025MR1642144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.