# Localization of LM n-algebras

Open Mathematics (2005)

- Volume: 3, Issue: 1, page 105-124
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topFlorentina Chirte§. "Localization of LM n-algebras." Open Mathematics 3.1 (2005): 105-124. <http://eudml.org/doc/268880>.

@article{FlorentinaChirte2005,

abstract = {The aim of this paper is to define the localization LM n-algebra of an LM n-algebra L with respect to a topology F on L; in Section 5 we prove that the maximal LM n-algebra of fractions (defined in [3]) and the LM n-algebra of fractions relative to an Λ-closed system (defined in Section 2) are LM n-algebras of localization.},

author = {Florentina Chirte§},

journal = {Open Mathematics},

keywords = {03D20; 06G30},

language = {eng},

number = {1},

pages = {105-124},

title = {Localization of LM n-algebras},

url = {http://eudml.org/doc/268880},

volume = {3},

year = {2005},

}

TY - JOUR

AU - Florentina Chirte§

TI - Localization of LM n-algebras

JO - Open Mathematics

PY - 2005

VL - 3

IS - 1

SP - 105

EP - 124

AB - The aim of this paper is to define the localization LM n-algebra of an LM n-algebra L with respect to a topology F on L; in Section 5 we prove that the maximal LM n-algebra of fractions (defined in [3]) and the LM n-algebra of fractions relative to an Λ-closed system (defined in Section 2) are LM n-algebras of localization.

LA - eng

KW - 03D20; 06G30

UR - http://eudml.org/doc/268880

ER -

## References

top- [1] R. Balbes and Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974.
- [2] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu: Lukasiewicz-Moisil Algebras, North Holland, 1991.
- [3] D. Buşneag and F. Chirteş: LM n -algebra of fractions and maximal LM n -algebra of fractions, to appear in Discrete Mathematics.
- [4] D. Buşneag: “F-multipliers and the localization of Hilbert algebras”, Zeitschr. f. math. Logik und Grundlagen d. Math. Bd., Vol. 36, (1990), pp. 331–338.
- [5] R. Cignoli: Algebras de Moisil, Notas de Logica Matematica, 27, Instituto de Matematica, Universidad del Sur, Bahia Blanca, 1970. Zbl0212.31701
- [6] R. Cignoli: “An algebraic approch to elementary theory based on n-valued Lukasiewicz logics”, Z. Math Logic u. Grund. Math., Vol. 30, (1984), pp. 87–96 http://dx.doi.org/10.1002/malq.19840300106 Zbl0551.03037
- [7] W.H. Cornish: “The multiplier extension of a distributive lattice”, Journal of Algebra, Vol. 32, (1974), pp. 339–355. http://dx.doi.org/10.1016/0021-8693(74)90143-4
- [8] C. Dan: F-multipliers and the localization of Heyting algebras, Analele Universitâţii din Craiova, Seria Matematica-Informatica, Vol. XXIV, 1997, pp. 98–109. Zbl1053.03520
- [9] G. Georgescu and C. Vraciu: “On the Characterisation of Centred Lukasiewicz Algebras”, Journal of Algebra, Vol. 16(4), (1970), pp. 486–495. http://dx.doi.org/10.1016/0021-8693(70)90002-5
- [10] G. Georgescu: “F-multipliers and localizations of distributive lattices”,Algebra Universalis,Vol 21, (1985),pp. 181–197. http://dx.doi.org/10.1007/BF01188055 Zbl0602.06006
- [11] J. Lambek: Lectures on Rings and Modules, Blaisdell Publishing Company, 1966.
- [12] N. Popescu: Abelian categories with applications to rings and modules, Academic Press, New York, 1973. Zbl0271.18006
- [13] J. Schmid: “Multipliers on distributive lattices and rings of quotients”, Houston Journal of Mathematics, Vol. 6(3), (1980). Zbl0501.06008
- [14] J. Schmid: “Distributive lattices and rings of quotients”, Coll. Math. Societatis Janos Bolyai (Szeged, Hungary), Vol. 33, (1980).
- [15] B. Strenström: “Platnes and localization over monoids”, Math. Nachrichten, Vol. 48, (1971), pp. 315–334. Zbl0199.33703

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.